Abstract

Spectral anti-crossings between the fundamental guided mode and core-wall resonances alter the dispersion in hollow-core anti-resonant-reflection photonic crystal fibers. Here we study the effect of this dispersion change on the nonlinear propagation and dynamics of ultrashort pulses. We find that it causes emission of narrow spectral peaks through a combination of four-wave mixing and dispersive wave emission. We further investigate the influence of the anti-crossings on nonlinear pulse propagation and show that their impact can be minimized by adjusting the core-wall thickness in such a way that the anti-crossings lie spectrally distant from the pump wavelength.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers

Md. Selim Habib, Christos Markos, J. Enrique Antonio-Lopez, Rodrigo Amezcua Correa, Ole Bang, and Morten Bache
Opt. Express 26(19) 24357-24371 (2018)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

Influence of ionization on ultrafast gas-based nonlinear fiber optics

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St.J. Russell
Opt. Express 19(21) 21018-21027 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, “Low-power, quasi-cw Raman oscillator,” Appl. Phys. Lett. 21, 539–541 (1972).
    [Crossref]
  2. M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  3. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
    [Crossref]
  4. I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
    [Crossref]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  6. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow–core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref]
  7. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
    [Crossref]
  8. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref]
  9. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
    [Crossref]
  10. M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jaregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
    [Crossref]
  11. F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St.J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
    [Crossref]
  12. G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.
  13. F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
    [Crossref]
  14. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
    [Crossref]
  15. T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
    [Crossref]
  16. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref]
  17. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
    [Crossref]
  18. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003).
    [Crossref]
  19. F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.
  20. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  21. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [Crossref]
  22. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  23. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
    [Crossref]
  24. D. V. Skryabin, “Coupled core-surface solitons in photonic crystal fibers,” Opt. Express 12, 4841–4846 (2004).
    [Crossref]
  25. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
    [Crossref]
  26. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
    [Crossref]
  27. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  29. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
    [Crossref]
  30. X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
    [Crossref]
  31. F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  32. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
    [Crossref]
  33. M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
    [Crossref]
  34. F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

2017 (6)

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St.J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
[Crossref]

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

2016 (2)

2015 (4)

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jaregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (2)

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

2011 (3)

2004 (1)

2003 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

2001 (1)

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

1999 (1)

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

1996 (1)

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

1990 (1)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref]

1972 (1)

E. P. Ippen, “Low-power, quasi-cw Raman oscillator,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Abdolvand, A.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Ahmed, G.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

Backus, S.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Balciunas, T.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Baltuska, A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Bartels, R.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

Belli, F.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.

Benabid, F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Biriukov, A. S.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

Boppart, S. A.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

Cassataro, M.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

Chang, W.

Charles, G.

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Chemnitz, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Chen, H. H.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref]

Dianov, E. M.

Dudley, J. M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Durfee, C. G.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

Durfee, I.

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Dutin, C. F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Edavalath, N. N.

Emaury, F.

Erkintalo, M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Ermolov, A.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

Fan, G.

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Fedotov, A. B.

Frosz, M. H.

Gaida, C.

Gao, S.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Gebhardt, M.

Genty, G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Gerome, F.

Gérome, F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Günendi, M. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

Hädrich, S.

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Hässler, S.

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Heckl, O. H.

Herne, C.

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Hölzer, P.

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Hu, J.

Hu, M.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Ippen, E. P.

E. P. Ippen, “Low-power, quasi-cw Raman oscillator,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Jaregui, C.

Joly, N. Y.

Kapteyn, H. C.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Keller, U.

Knight, J. C.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Kobelke, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Konorov, S. O.

Kosolapov, A. F.

Köttig, F.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St.J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

Lægsgaard, J.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Lee, Y. C.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref]

Li, Y.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Limpert, J.

Liu, B.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Liu, J.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Liu, X.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Mak, K. F.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Martens Biersach, C.

Ménard, J.

Meng, F.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Menyuk, C. R.

Misoguti, L.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

Murdoch, S. G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Murnane, M. M.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Nazarkin, A.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Nisoli, M.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Nold, J.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Novoa, D.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

Paulus, G.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Plotnichenko, V. G.

Pryamikov, A. D.

Rundquist, A. R.

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

Russell, P. St.J.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St.J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Saraceno, C. J.

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Schmidt, M.

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

Schmidt, M. A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Schriber, C.

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Semjonov, S. L.

Silvestri, S. D.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Skryabin, D. V.

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Stutzki, F.

Südmeyer, T.

Svane, A. S.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Svelto, O.

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Tani, F.

Trant, M.

Travers, J. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St.J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.

Tu, H.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Tünnermann, A.

Turchinovich, D.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Uebel, P.

Voronin, A. A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Wadsworth, W. J.

Wai, P. K. A.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref]

Wang, C.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Wang, P.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Wang, S.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Wang, Y.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

Wang, Y. Y.

Wei, C.

Weiblen, R. J.

Witting, T.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Xu, Y. Q.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Yu, F.

Zeisberger, M.

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

Zheltikov, A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

Zheltikov, A. M.

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

E. P. Ippen, “Low-power, quasi-cw Raman oscillator,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

J. Lightwave Technol. (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416–423 (1993).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D 49, 023001 (2016).
[Crossref]

Light Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Nat. Commun. (2)

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. St.J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8, 813 (2017).
[Crossref]

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (2)

Phys. Rev. A (2)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

Phys. Rev. Lett. (4)

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[Crossref]

I. Durfee, G. Charles, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Sci. Rep. (1)

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Other (4)

G. Fan, T. Balciunas, S. Hässler, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1P.1.

F. Belli, A. Abdolvand, J. C. Travers, and P. St.J. Russell, “Ultrafast four wave mixing to the deep UV in gas filled kagomé PCF,” in Europhoton (2016), paper SS-1.5.

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K.4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Effective refractive index of the fundamental core mode of (e) an ideal kagomé-PCF and (f) an SR-PCF, calculated using FEM (blue dots), and with the capillary model given by Eq. (1) with R1=0 (orange-dashed line). Fitting the FEM data to Eq. (1) including the response function given by Eq. (1) (green-solid line) gives A1=3.5  THz, Γ1=10  THz for the kagomé-PCF (left) and A1=2.4  THz, Γ1=4.1  THz for the SR-PCF. (g), (h) Zoom into the anti-crossing. Both fibers are assumed to be evacuated. The red under-shaded trace shows the FEM-calculated fiber loss. Scanning electron micrographs of the fibers are shown as insets. The plots above show the FEM mode profiles at 1030 nm [off-resonance, (b), (d)] and at 610 and 700 nm [on-resonance, (a), (c)] for the kagomé-PCF (left) and SR-PCF (right).
Fig. 2.
Fig. 2. (a) FWM dephasing for the kagomé-PCF, filled with 35 bar Ne. The slanted black line indicates degeneracy (signal and idler frequencies equal to the pump frequency). (b) Dephasing to DWs calculated under the same conditions, for an ideal anti-crossing-free fiber (dashed orange) and the real fiber filled with Ne at 35 bar (green).
Fig. 3.
Fig. 3. (a) Measured and (b) simulated spectrum at the kagomé-PCF output. (c) Maximum peak intensity along the fiber normalized to the input intensity (red squares) and conversion efficiency to the UV DW (blue dots) as a function of the wavelength of the q=1 anti-crossing. The arrow points to the drop in the conversion efficiency to the DW, which is caused by the q=2 anti-crossing that coincides with the DW wavelength.
Fig. 4.
Fig. 4. (a) Maximum peak intensity along the fiber as a function of Δξ for increasing N by incrementing the gas-filling pressure (the first number is N and the second the Ne pressure). Each data point is calculated for a 27 fs (FHWM) Gaussian pump pulse launched into the kagomé-PCF with pulse energy 6 μJ. Each curve is normalized to the peak intensity I0 at the fiber input. The black diamonds mark the points where each I/I0 curve has dropped below 90% of its maximum. (b) The I/I0 curves obtained keeping N constant and changing gas pressure and pulse energy: 6 μJ (red curve) and 11.5 μJ (orange curve). (c) Central wavelength of the q=1 anti-crossing as a function of Δξ [color-coding is the same as in (a)].
Fig. 5.
Fig. 5. (a) Effective refractive index of the fundamental core mode of the SR-PCF calculated via FEM (blue dots), for the original fiber (350  nm capillary-wall thickness) and (b) after etching (220  nm). The solid lines show the curves obtained by fitting the FEM data to Eq. (1), and the under-shaded curves plot the FEM-calculated fiber loss. Experimental output spectra at (c) 11.3 μJ input energy in the original fiber and (d) 9.7 μJ in the etched fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

neff(ω)1+{ngas2(ω)1[2cumn/(ωd)]2+qRq(ω)}/2,Rq(ω)=Aq2/(ωq2ω2+iΓqω),

Metrics