Abstract

In this paper, we propose an additional noise-free, independent center frequency and bandwidth tunable optical filter based on stimulated Brillouin scattering (SBS) losses. By suppressing the out-of-band signal with two broadened symmetric SBS losses, tunable pass bandwidths from 500 MHz to 9.5 GHz and the independent center frequency tunability are demonstrated. Considering the limited SBS interaction in the center frequency range, a flat-top response with minimum 0.3 dB ripple is achieved. Assisted by the extra suppression from polarization pulling, a maximum selectivity of 20 dB and an ultrahigh 250  dB/GHz roll-off are reached. A gain-based SBS filter adds noise to the filtered signal. However, for our proposed filter setup, no additional noise is detected due to the transparency in the passband. Considering the wide independent bandwidth and center frequency tunability, flat-top response, and low-noise characteristic, our proposed filter can be perfectly used as a supplement of most commercialized conventional tunable optical single bandpass filters, whose minimum bandwidth is limited by 10 GHz.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering

Assaf Wise, Moshe Tur, and Avi Zadok
Opt. Express 19(22) 21945-21955 (2011)

Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber

Wei Wei, Lilin Yi, Yves Jaouën, and Weisheng Hu
Opt. Express 22(19) 23249-23260 (2014)

Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering

Wei Wei, Lilin Yi, Yves Jaouën, Michel Morvan, and Weisheng Hu
Opt. Express 23(15) 19010-19021 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  2. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36, 50–55 (1998).
    [Crossref]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [Crossref]
  4. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  5. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4  MHz,” Opt. Express 19, 8565–8570 (2011).
    [Crossref]
  6. S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55, 031110 (2016).
    [Crossref]
  7. A. Wiatrek, S. Preussler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37, 930–932 (2012).
    [Crossref]
  8. W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
    [Crossref]
  9. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).
    [Crossref]
  10. R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
    [Crossref]
  11. Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.
  12. A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
    [Crossref]
  13. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
    [Crossref]
  14. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22, 23249–23260 (2014).
    [Crossref]
  15. L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34, 669–675 (2016).
    [Crossref]
  16. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
    [Crossref]
  17. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2, B18–B25 (2014).
    [Crossref]
  18. W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” IEEE Photon. Technol. Lett. 27, 1593–1596 (2015).
    [Crossref]
  19. C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25, 20969–20982 (2017).
    [Crossref]
  20. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump,” Opt. Lett. 42, 4083–4086 (2017).
    [Crossref]
  21. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
    [Crossref]
  22. M. Choi, I. C. Mayorga, S. Preussler, and T. Schneider, “Investigation of gain dependent relative intensity noise in fiber Brillouin amplification,” J. Lightwave Technol. 34, 3930–3936 (2016).
    [Crossref]
  23. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [Crossref]
  24. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
    [Crossref]
  25. W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering,” Opt. Express 23, 19010–19021 (2015).
    [Crossref]
  26. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
    [Crossref]
  27. R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3, 1180–1192 (1985).
    [Crossref]
  28. K. Y. Song and K. Hotate, “25  GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
    [Crossref]
  29. A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.
  30. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
    [Crossref]
  31. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  32. R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref]

2017 (3)

2016 (4)

L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34, 669–675 (2016).
[Crossref]

M. Choi, I. C. Mayorga, S. Preussler, and T. Schneider, “Investigation of gain dependent relative intensity noise in fiber Brillouin amplification,” J. Lightwave Technol. 34, 3930–3936 (2016).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55, 031110 (2016).
[Crossref]

2015 (2)

W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” IEEE Photon. Technol. Lett. 27, 1593–1596 (2015).
[Crossref]

W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering,” Opt. Express 23, 19010–19021 (2015).
[Crossref]

2014 (2)

2013 (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

2012 (3)

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

A. Wiatrek, S. Preussler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37, 930–932 (2012).
[Crossref]

2011 (4)

2010 (1)

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2002 (1)

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1998 (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36, 50–55 (1998).
[Crossref]

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[Crossref]

1985 (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3, 1180–1192 (1985).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Aryanfar, I.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Ben-Ezra, Y.

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36, 50–55 (1998).
[Crossref]

Brès, C.-S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Cao, Y.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

Capmany, J.

Choi, D.

Choi, D. Y.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Choi, M.

Choudhary, A.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Chowdhury, D.

Dawes, A. M.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Eggleton, B. J.

R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Eyal, A.

Feng, X.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[Crossref]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Gauthier, D. J.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Guan, B.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

Guo, Z.

Han, B.

Hile, S.

Hotate, K.

Hu, W.

Jamshidi, K.

Jaouën, Y.

Ke, C.

Kikuchi, K.

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Kobyakov, A.

Li, E.

Li, Z.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

Liu, D.

Liu, Y.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Luther-Davies, B.

Ma, P.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Madden, S.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Madden, S. J.

Marpaung, D.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Mayorga, I. C.

Mcfarlane, H.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).
[Crossref]

Morrison, B.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Morvan, M.

Ortega, B.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Pant, R.

Pastor, D.

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[Crossref]

Poulton, C. G.

Preussler, S.

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[Crossref]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36, 50–55 (1998).
[Crossref]

Sales, S.

Sauer, M.

Schneider, T.

Shi, M.

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Song, K. Y.

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Stern, Y.

Takushima, Y.

Tanemura, T.

Tao, R.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

Thévenaz, L.

Tucker, R. S.

R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3, 1180–1192 (1985).
[Crossref]

Tur, M.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Vu, K.

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Wei, W.

Wiatrek, A.

Willner, A. E.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Wise, A.

Xing, C.

Yi, L.

Zadok, A.

Zhang, K.

Zhang, L.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Zhang, R.

Zhang, W.

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).
[Crossref]

Zhong, K.

Zhong, Y.

Zhu, Z.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Zilka, E.

Adv. Opt. Photon. (1)

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36, 50–55 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (4)

W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” IEEE Photon. Technol. Lett. 27, 1593–1596 (2015).
[Crossref]

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).
[Crossref]

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1097–1099 (2012).
[Crossref]

J. Lightwave Technol. (6)

Nat. Commun. (2)

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Nat. Photonics (1)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Opt. Eng. (1)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55, 031110 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[Crossref]

Photon. Res. (1)

Proc. SPIE (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Other (2)

A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317–320.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Principle of the proposed filter based on SBS losses. Black solid line, broad input signal; BFS, Brillouin frequency shift. (b) Overall filter profile of SBS loss-based filter with a conventional optical filter. Blue dashed line, filter profile of conventional filter; red dashed line, SBS losses; black solid line, overall filter profile.
Fig. 2.
Fig. 2. Experimental setup. SG, signal generator; LD, laser diode; PC, polarization controller; RFG, radio frequency generator; DD-MZM, dual-drive Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; Cir, circulator; FBG, fiber Bragg grating; VOA, variable optical attenuator; SMF, single-mode fiber; PBS, polarization beam splitter; OSA, optical spectrum analyzer.
Fig. 3.
Fig. 3. Pump signal for the filter pass bandwidth of (a) 500 MHz, (b) 3.7 GHz, (c) 7.1 GHz, and (d) 9.5 GHz.
Fig. 4.
Fig. 4. Filter profile for fixed center frequency and filter pass bandwidths of 500 MHz (black), 3.7 GHz (red), 7.1 GHz (blue), and 9.5 GHz (pink) with polarization pulling.
Fig. 5.
Fig. 5. Filter profile for tunable center frequency and filter pass bandwidths of 500 MHz (black), 3.7 GHz (red), 7.1 GHz (blue), and 9.5 GHz (pink).
Fig. 6.
Fig. 6. Heterodyne detection of the filtered signal with a local oscillator within the pass band of (a) the SBS loss-based filter and (b) the SBS gain-based filter. Insets (i) and (ii) show the peak signal and the pump spectrum, respectively.

Metrics