Abstract

Oxygen-containing defects are very important for altering the nonlinear optical (NLO) properties of graphene. To investigate the correlation between oxygen-containing defects and the synergistic NLO response in graphene-based nanocomposites, we attached CdS nanocrystals on the surface of graphene (G) and prepared G/CdS nanohybrids (NHs) consisting of various oxygen-containing functional groups via a chemical method. The NLO absorption and refraction of G/CdS NHs under single pulse laser irradiation are enhanced by 10.8 times with the concentration decrease of surface oxygen-containing groups, which might be attributed to the local field effects and synergetic effects stemming from charge transfer between the two components. However, the optical nonlinearity is decreased with further concentration decrease, which might arise from sp2 fragment interconnection and surface defects in the NHs. The NLO absorption transformation from two-photon absorption to saturable absorption with oxygen decrease is observed, and intensity-related NLO absorption and refraction in NHs are also discussed. Meanwhile, the G/CdS NHs exhibit superior NLO properties, implying potential applications of NH material in NLO devices.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Third-order nonlinear optical response and optical limiting of colloidal carbon dots

Panagiotis Aloukos, Irini Papagiannouli, Athanasios B. Bourlinos, Radek Zboril, and Stelios Couris
Opt. Express 22(10) 12013-12027 (2014)

Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction

Hongfei Shi, Can Wang, Zhipei Sun, Yueliang Zhou, Kuijuan Jin, Simon A. T. Redfern, and Guozhen Yang
Opt. Express 22(16) 19375-19385 (2014)

Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles

Mengmeng Yue, Jinhai Si, Lihe Yan, Yang Yu, and Xun Hou
Opt. Mater. Express 8(3) 698-703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
    [Crossref]
  2. E. Dremetsika, B. Dlubak, S. P. Gorza, C. Ciret, M. B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41, 3281–3284 (2016).
    [Crossref]
  3. S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
    [Crossref]
  4. M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
    [Crossref]
  5. R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
    [Crossref]
  6. Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
    [Crossref]
  7. S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
    [Crossref]
  8. M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
    [Crossref]
  9. Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
    [Crossref]
  10. A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
    [Crossref]
  11. C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
    [Crossref]
  12. B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
    [Crossref]
  13. B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
    [Crossref]
  14. B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
    [Crossref]
  15. M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
    [Crossref]
  16. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
    [Crossref]
  17. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
    [Crossref]
  18. A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
    [Crossref]
  19. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
    [Crossref]
  20. L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
    [Crossref]
  21. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
    [Crossref]
  22. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  23. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
    [Crossref]
  24. A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
    [Crossref]
  25. Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
    [Crossref]
  26. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
    [Crossref]
  27. C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
    [Crossref]
  28. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
    [Crossref]
  29. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
    [Crossref]
  30. D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
    [Crossref]
  31. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
    [Crossref]
  32. L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
    [Crossref]
  33. B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
    [Crossref]
  34. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
    [Crossref]
  35. E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
    [Crossref]
  36. B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
    [Crossref]

2018 (1)

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

2017 (3)

E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
[Crossref]

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

2016 (6)

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

E. Dremetsika, B. Dlubak, S. P. Gorza, C. Ciret, M. B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41, 3281–3284 (2016).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

2015 (5)

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
[Crossref]

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

2014 (3)

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

2013 (3)

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

2012 (1)

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

2011 (4)

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

2010 (3)

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

2009 (2)

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

2006 (1)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

2005 (1)

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

2000 (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

1997 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Achete, C. A.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Agnoli, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Alemany, L. B.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Azab, A. A.

E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
[Crossref]

Bai, L. Z.

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

Basche, T.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

Berlin, J. M.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Bhaumik, S.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Biswas, S.

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

Boyd, R. W.

Cai, Z.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Cançado, L. G.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Cao, A.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Cao, Y. W.

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

Capaz, R. B.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Celik, O.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Chang, M. J.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Chang, Y.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Chen, C. W.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

Chen, H. A.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

Chen, I. S.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

Chen, W.

C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
[Crossref]

Chen, W. Q.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Chen, Y.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Chen, Z.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Chhowalla, M.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Chu, S.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Cifuentes, M. P.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Ciret, C.

Cui, Y. P.

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

Demir, H. V.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Dlubak, B.

Dolfi, D.

Dong, H.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Dong, Y.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Dremetsika, E.

Eda, G.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

El-Menyawy, E. M.

E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
[Crossref]

Emplit, P.

Erdem, E.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Fang, Y.

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Fardindoost, S.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Ferrari, A. C.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

Ferreira, E. H. M.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Fischer, G.

Fraser, S.

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Gao, J.

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Gao, X.

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Gao, Y.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Garfunkel, E.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Gong, Q.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Gopinath, P.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

Gorza, S. P.

Granozzi, G.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Gratzel, M.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Gregory, D. A.

Gu, Y. Z.

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

Guzelturk, B.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

He, C.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Hofmann, S.

Hu, J.

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

Huang, J. P.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Huang, Z.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

Humphrey, M. G.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Jia, B.

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Jia, D.

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

John, H.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

Jorio, A.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Kavitha, M. K.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

Kelestemur, Y.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Kockaert, P.

Kolb, U.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

Kole, A. K.

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

Kosynkin, D. V.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Krishna, M. B. M.

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Krueger, M.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Kucukayan-Dogu, G.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Kulmala, T. S.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Kumar, V. P.

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Kumbhakar, P.

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

Lei, Z.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Li, C.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Li, D.

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Li, J.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

Li, P.

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

Li, W.

C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
[Crossref]

Li, Z.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Lin, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Lin, Y. Y.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

Liu, L.

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Liu, R.

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

Liu, Y.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Liu, Z.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Lombardo, A.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Long, L.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Lu, J.

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Lu, W.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Marcano, D. C.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Martin, M. B.

Massar, S.

Mastrogiovanni, D.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Mathews, N.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Mattevi, C.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Mews, A.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

Mhaisalkar, S.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Miller, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Mkhoyan, K. A.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Moutinho, M. V. O.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Ouyang, Q.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Peng, R.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Pham, C. V.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Philip, R.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

Qi, L.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Qiu, L.

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Rao, D. N.

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Repp, S.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Seneor, P.

Shao, J.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sinitskii, A.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Slesarev, A.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Smith, D. D.

Song, J.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

Song, W.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Song, Y.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Song, Y. L.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Stavale, F.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sum, T. C.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Sun, Z.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Thomann, R.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Tian, J.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Tiwary, C. S.

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

Tour, J. M.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Veldhuis, S. A.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Venkatesan, R.

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Venkatramaiah, N.

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Wang, A.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Wang, C.

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

Wang, F. F.

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

Wang, J.

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

Wang, L.

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Wang, Q.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Wang, S.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Wang, Y.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Wang, Z.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Weber, S.

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wu, M.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Wu, Y.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Xie, R.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

Xing, G. C.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Xu, Q.

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Xu, Y.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Xu, Z.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Yamaguchi, H.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

Ye, Z.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Yeltik, A.

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Yu, H.

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Yu, K. W.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Yu, W.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Zedan, I. T.

E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
[Crossref]

Zhang, C.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

Zhang, D. D.

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Zhang, H. C.

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

Zhang, H. L.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Zhang, J. M.

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

Zhang, J. Y.

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

Zhang, K.

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

Zhang, L.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

Zhang, X.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Zhang, Y.

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Zhang, Z. Y.

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

Zhao, C.

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

Zhao, D. L.

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

Zhao, J.

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Zhao, M.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Zheng, C.

C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
[Crossref]

Zheng, Q.

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Zheng, X.

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

Zhou, F.

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Zhou, Z. Q.

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

Zhu, B. H.

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

Zhu, H.

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

Zhu, S.

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

R. Liu, J. Hu, S. Zhu, J. Lu, and H. Zhu, “Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes,” ACS Appl. Mater. Interfaces 9, 33029–33040 (2017).
[Crossref]

ACS Nano (1)

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4, 4806–4814 (2010).
[Crossref]

Adv. Func. Mater. (1)

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Func. Mater. 19, 2577–2583 (2009).
[Crossref]

Adv. Mater. (2)

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22, 505–509 (2010).
[Crossref]

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,” Adv. Mater. 22, 103–106 (2010).
[Crossref]

Appl. Phys. Express (1)

B. H. Zhu, F. F. Wang, K. Zhang, J. Y. Zhang, and Y. Z. Gu, “Enhanced three-photon absorption in CdSe/CdS core/shell nanocrystals in near-infrared,” Appl. Phys. Express 9, 082602 (2016).
[Crossref]

Appl. Phys. Lett. (7)

B. H. Zhu, H. C. Zhang, J. Y. Zhang, Y. P. Cui, and Z. Q. Zhou, “Surface-related two-photon absorption and refraction of CdSe quantum dots,” Appl. Phys. Lett. 99, 021908 (2011).
[Crossref]

B. H. Zhu, H. C. Zhang, Z. Y. Zhang, Y. P. Cui, and J. Y. Zhang, “Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals,” Appl. Phys. Lett. 99, 231903 (2011).
[Crossref]

B. H. Zhu, F. F. Wang, Y. W. Cao, C. Wang, J. Wang, and Y. Z. Gu, “Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals,” Appl. Phys. Lett. 108, 252106 (2016).
[Crossref]

S. Fraser, X. Zheng, L. Qiu, D. Li, and B. Jia, “Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles,” Appl. Phys. Lett. 107, 031112 (2015).
[Crossref]

M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, “Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials,” Appl. Phys. Lett. 98, 081106 (2011).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, and Y. Chen, “Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass,” Appl. Phys. Lett. 102, 031912 (2013).
[Crossref]

Carbon (4)

L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, “Amorphous structural models for graphene oxides,” Carbon 50, 1690–1698 (2012).
[Crossref]

Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, “Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses,” Carbon 67, 214–220 (2014).
[Crossref]

A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, “Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites,” Carbon 89, 130–141 (2015).
[Crossref]

C. Zheng, W. Chen, and W. Li, “Construction of a graphene oxide-encapsulated Pt@TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior,” Carbon 93, 400–411 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. Alloys Compd. (2)

E. M. El-Menyawy, I. T. Zedan, and A. A. Azab, “One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications,” J. Alloys Compd. 695, 3429–3434 (2017).
[Crossref]

D. D. Zhang, D. L. Zhao, J. M. Zhang, and L. Z. Bai, “Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite,” J. Alloys Compd. 589, 378–383 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).
[Crossref]

J. Mater. Chem. C (1)

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1, 3669–3676 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Kelestemur, and H. V. Demir, “Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures,” J. Phys. Chem. C 117, 25298–25304 (2013).
[Crossref]

Nano Lett. (1)

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Nanoscale (2)

C. V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, and E. Erdem, “Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials,” Nanoscale 8, 9682–9687 (2016).
[Crossref]

M. Zhao, R. Peng, Q. Zheng, Q. Wang, M. J. Chang, Y. Liu, Y. L. Song, and H. L. Zhang, “Broadband optical limiting response of a graphene-PbS nanohybrid,” Nanoscale 7, 9268–9274 (2015).
[Crossref]

Nat. Commun. (1)

W. Q. Chen, S. Bhaumik, S. A. Veldhuis, G. C. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. H. Zhu, F. F. Wang, P. Li, C. Wang, and Y. Z. Gu, “Surface oxygen-containing defects of graphene nanosheets with tunable nonlinear optical absorption and refraction,” Phys. Chem. Chem. Phys. 20, 27105–27114 (2018).
[Crossref]

Phys. Rep. (1)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

RSC Adv. (2)

Z. Wang, C. He, W. Song, Y. Gao, Z. Chen, Y. Dong, C. Zhao, Z. Li, and Y. Wu, “The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids,” RSC Adv. 5, 94144–94154 (2015).
[Crossref]

S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique,” RSC Adv. 6, 10319–10325 (2016).
[Crossref]

Sci. Rep. (2)

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

A. Wang, W. Yu, Z. Huang, F. Zhou, J. Song, Y. Song, L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, and C. Zhang, “Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance,” Sci. Rep. 6, 23325 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic illustration of the synthesis procedure of G/CdS NHs.
Fig. 2.
Fig. 2. Typical FTIR spectra of S1, S2, S4, and S6.
Fig. 3.
Fig. 3. Typical XPS spectra of (a) S1, (b) typical C 1s, and (c) O 1s. (d) Ratio of O and C of the samples.
Fig. 4.
Fig. 4. TEM images of (a) S1 and (b) S5. HRTEM image of CdS [inset of (a)]. EDX spectra of (c) S2 and (d) S6.
Fig. 5.
Fig. 5. XRD patterns of the samples.
Fig. 6.
Fig. 6. (a) Raman spectra and (b) nD of the samples.
Fig. 7.
Fig. 7. (a) Absorption spectra of S6 compared with CdS and graphene. (b) Typical absorption spectra of the samples.
Fig. 8.
Fig. 8. Measured OA Z-scan traces of (a) S6, CdS, and graphene and (b) S3, S4, and S6. (c) The typical β of S6 as a function of intensity. (d) Typical CA Z-scan traces of S6, CdS, graphene, and DMF. The red solid lines in (a) and (d) are the fitting curves by NLO absorption and refraction Z-scan theoretical formulas, respectively.
Fig. 9.
Fig. 9. Imχ(3) (red), Reχ(3) (blue), and χ(3) (black) plots of these six samples. The inset shows Reχ(3) alone to illustrate its variation clearly.
Fig. 10.
Fig. 10. Typical NLO transmission spectrum (S2). The red solid line is the theoretical fitting curve.
Fig. 11.
Fig. 11. (a) OA Z-scan curves of S6 at 4.2, 5.6, and 6.8  GW/cm2. OA Z-scan curves of the six samples at (b) 4.1  GW/cm2 and (c) 5.2  GW/cm2. (d) Typical TPV plots of S2 and S4. (e) The intensity region value and the valley appearance intensity of the samples.
Fig. 12.
Fig. 12. PL spectra of S6, GO, and CdS.
Fig. 13.
Fig. 13. Structural models of G/CdS at different stages of reduction of (a) S2, (c) S4, (e) and S6. The dark gray areas represent sp2 carbon clusters and the dark blue small dots represent sp3 carbon bonded to oxygen groups. The light blue areas represent CdS NCs. The overlap of electron and hole of (b) S2, (d) S4, and (f) S6.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χeff(3)=(χi(3)+χh(3))+(fqi2|qi|21)χi(3),