Abstract

We employed a metallic wire grating loaded with graphene and operating in total internal reflection (TIR) geometry to realize deep and broadband THz modulation. The non-resonant field enhancement effect of the evanescent wave in TIR geometry and in the subwavelength wire grating was combined to demonstrate a 77% modulation depth (MD) in the frequency range of 0.2–1.4 THz. This MD, achieved electrically with a SiO2/Si gated graphene device, was 4.5 times higher than that of the device without a metal grating in transmission geometry. By optimizing the parameters of the metallic wire grating, the required sheet conductivity of graphene for deep modulation was lowered to 0.87 mS. This work has potential applications in THz communication and real-time THz imaging.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Long-range surface plasmon-induced tunable ultralow threshold optical bistability using graphene sheets at terahertz frequency

Aparupa Kar, Nabamita Goswami, and Ardhendu Saha
Appl. Opt. 56(8) 2321-2329 (2017)

Broadband terahertz modulators using self-gated graphene capacitors

Nurbek Kakenov, Osman Balci, Emre O. Polat, Hakan Altan, and Coskun Kocabas
J. Opt. Soc. Am. B 32(9) 1861-1866 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [Crossref]
  2. C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
    [Crossref]
  3. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
    [Crossref]
  4. F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref]
  5. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  6. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
    [Crossref]
  7. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
    [Crossref]
  8. I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41, 3261–3264 (2016).
    [Crossref]
  9. X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
    [Crossref]
  10. R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
    [Crossref]
  11. M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
    [Crossref]
  12. F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
    [Crossref]
  13. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
    [Crossref]
  14. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
    [Crossref]
  15. D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
    [Crossref]
  16. G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
    [Crossref]
  17. W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
    [Crossref]
  18. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
    [Crossref]
  19. Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
    [Crossref]
  20. S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
    [Crossref]
  21. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
    [Crossref]
  22. A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
    [Crossref]
  23. X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
    [Crossref]
  24. X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
    [Crossref]
  25. X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
    [Crossref]
  26. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
    [Crossref]
  27. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  28. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
    [Crossref]
  29. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]

2018 (1)

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

2017 (3)

X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
[Crossref]

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

2016 (5)

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41, 3261–3264 (2016).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

2015 (3)

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

2014 (4)

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

2013 (2)

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2012 (5)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

2010 (2)

2009 (1)

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

2007 (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

1992 (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[Crossref]

Ajayan, P. M.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Al Hadi, R.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Banerjee, K.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Bauer, S.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[Crossref]

Beere, H. E.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Braeuninger-Weimer, P.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Cathelin, A.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Chang, S.

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

Chang, S. J.

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

Chen, M.

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

Chen, S.

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

Chen, X.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
[Crossref]

Chen, Y.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Chen, Z.

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

Chia, E. E.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Crommie, M. F.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Crunteanu, A.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

Cumming, D. R. S.

Davies, A. G.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Dawson, P.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Degl’Innocenti, R.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Deorani, P.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Dubonos, S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Escorcia, I.

Fan, F.

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Firsov, A.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Forster, W.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Gao, W.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Gibson, G. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Gough, J.

Grant, J.

Grigorieva, I.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Grzyb, J.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Gu, W. H.

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

Gundlach, D.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Han, C.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

Han, H.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

He, X.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Hein, G.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Hendry, E.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Hochrein, T.

Hofmann, S.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Hong, X.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Hornett, S. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Hu, X.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Humbert, G.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Ivinskaya, A. M.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Jansen, C.

Jena, D.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Jepsen, P. U.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jördens, C.

Jung, H. S.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Kaiser, A.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Keller, H. M.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Kindness, S. J.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Koch, M.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
[Crossref]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Kono, J.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Krumbholz, N.

La-o-vorakiat, C.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Lavrinenko, A. V.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Li, L. H.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Li, W.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Liang, G.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Liang, H. K.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Liang, X.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Lin, H.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Linfield, E. H.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Liu, J.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Liu, X.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
[Crossref]

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Lugiato, L.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Malureanu, R.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Marso, M.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Mittleman, D. M.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Morozov, S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Nickel, D. V.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Novitsky, A.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Padgett, M. J.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref]

Parrott, E. P.

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

Parrott, E. P. J.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Peters, O.

Pfeiffer, U. R.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Pickwell-MacPherson, E.

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5, 299–304 (2017).
[Crossref]

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

Pierz, K.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

Protasenko, V.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Qiu, X.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Rafique, S.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Reichel, K.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Ren, C.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Ren, Y.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Salhi, M.

Scheller, M.

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Shen, Y.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Sherry, H.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Shi, G.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Shi, S.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref]

Shu, J.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sol, C. W.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Son, J.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Stantchev, R. I.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Tsai, H.-Z.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Ung, B. S. Y.

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

Ung, B. S.-Y.

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Vajtai, R.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

Vieweg, N.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, F.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Wang, Q. J.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Wang, X.

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

Wang, X. H.

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wietzke, S.

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Wu, Y.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Xiao, L.

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Xu, J.

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Yang, H.

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Yang, L.

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

Yu, S. F.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Yu, X.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Zalkovskij, M.

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Zeitler, J. A.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

Zeng, B.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Zettl, A.

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

Zhang, Y.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, Y.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Zhu, M.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

ACS Photon. (2)

R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3, 464–470 (2016).
[Crossref]

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2, 1559–1566 (2015).
[Crossref]

Adv. Mater. (1)

Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Adv. Opt. Mater. (1)

X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2017).
[Crossref]

Am. J. Phys. (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60, 257–261 (1992).
[Crossref]

APL Photon. (2)

X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3, 051604 (2018).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105, 151110 (2014).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108, 171101 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53, 8500106 (2017).
[Crossref]

IEEE J. Solid-State Circuits (1)

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

J. Appl. Phys. (2)

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
[Crossref]

A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112, 074318 (2012).
[Crossref]

Nano Lett. (3)

S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014).
[Crossref]

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014).
[Crossref]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012).
[Crossref]

Nat. Commun. (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[Crossref]

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Quant. Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Sci. Adv. (1)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Science (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Graphene-loaded metal wire grating modulator in TIR geometry. The graphene device was deposited on a high-resistivity SiO2/Si substrate and placed on a Si prism. The conductivity of graphene was adjusted by the voltage between the ground (GND) and the metal grating. The incident THz signal was in s polarization. (b) Diagram of the metal grating loaded graphene structure in (a). The medium below the metal grating is the dense medium (n1), and above the metal grating is the less dense medium (n2). The THz signal is incident from the dense medium to the less dense medium in s polarization at an angle of θ. The period of the metal grating is P, and the gap width is g. The red dashed lines represent the integration loop of the electric field.
Fig. 2.
Fig. 2. (a) Simulation and calculation results of reflected intensity from a graphene/metal grating. The solid lines are calculation results, and the dots are simulation results with different enhancement factors (η). The black dashed lines are the calculation results without a metal grating. (b) Simulation structure of a metal grating in TIR geometry without graphene. The simulation electric field is polarized along the x direction. The black dashed line is to monitor the electric field amplitude in the simulations. (c) Simulated E-field enhancement of a THz wave with a metal grating with various grating parameters (η=2, 3, 10).
Fig. 3.
Fig. 3. Schematic of the experimental setup and photograph of the metal grating integrated graphene device. (a) Schematic of the graphene modulator in TIR geometry. (b) and (c) are photographs of the metal grating structure. (d) Photograph of the graphene area, showing clearly the graphene covered metal grating area and bare graphene area (white dashed outline).
Fig. 4.
Fig. 4. THz peak-to-peak images of two metal gratings without graphene in TIR geometry. The peak-to-peak values are calculated from the reflected THz electric field signal from the top surface of the devices. The direction of the electric field is represented by a red double-arrow line. The slit orientation of the grating is represented by golden lines. The white dashed outlines in the images highlight the grating areas. (a), (b) Images of the 30–15 μm grating with electric field perpendicular and parallel to the silt direction. (c), (d) Images of the 30–10 μm grating with electric field perpendicular and parallel to the slit direction.
Fig. 5.
Fig. 5. Experimental results of the metal grating integrated graphene device. (a), (b) THz peak-to-peak images of 30–15 μm and 30–10 μm grating devices without applying voltage. The graphene transferred on the metal grating is highlighted with white dashed lines. The right side of the graphene area is with a metal grating; the left side of the graphene area is without a covering metal grating. (c) and (d) are reflected waveforms by changing the gate voltages from 60  V to +60  V for 30–15 μm and 30–10 μm grating devices with (solid) and without a grating (dashed). Four insets in (c) and (d) show the peak value changes of the time-domain signal. The waveforms are shifted horizontally for clarity.
Fig. 6.
Fig. 6. (a) and (b) are MDs of the two devices in TIR and transmission geometries (T90). The red solid line is the MD of graphene integrated with a 30–10 μm grating; the blue solid line is the MD of graphene integrated with a 30–15 μm grating; the green dashed line is the MD of graphene without a metal grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ei+Er=Et,
ji=jr+jt+ja,
ϵ0cn1cosθiEi2=ϵ0cn1cosθiEr2+ϵ0cn2cosθtEt2+σsEt2,
ϵ0cn1cosθiEi2=ϵ0cn1cosθiEr2+ϵ0cn2cosθtEt2+ησsEt2,
rs=ErEi=n1cosθii·n12sin2θin22η·Z0σsn1cosθi+i·n12sin2θin22+η·Z0σs,