Abstract

Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-based light-emitting diodes (LEDs). The wafer-scale NP-GaN DBR, which is fabricated by electrochemical etching in a neutral solution, has a smooth surface, high reflectivity (>99.5%), and wide spectral stop band width (>70  nm). The chemical composition of the regrown LED thin film is similar to that of the reference LED, but the photoluminescence (PL) lifetime, PL intensity, and electroluminescence intensity of the LED with the DBR are enhanced several times compared to those of the reference LED. The intensity enhancement is attributed to the light reflection effect of the NP-GaN DBR and improved crystalline quality as a result of the etching scheme, whereas the enhancement of PL lifetime is attributable to the latter.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High performance of InGaN light-emitting diodes by air-gap/GaN distributed Bragg reflectors

Jae Hyoung Ryu, Hee Yun Kim, Hyun Kyu Kim, Yashpal Singh Katharria, Nam Han, Ji Hye Kang, Young Jae Park, Min Han, Beo Deul Ryu, Kang Bok Ko, Eun-Kyoung Suh, and Chang-Hee Hong
Opt. Express 20(9) 9999-10003 (2012)

Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers

Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 22(S4) A1164-A1173 (2014)

Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector

Seung-Min Lee, Su-Hyun Gong, Jin-Ho Kang, Mohamed Ebaid, Sang-Wan Ryu, and Yong-Hoon Cho
Opt. Express 23(9) 11023-11030 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
    [Crossref]
  2. F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
    [Crossref]
  3. R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
    [Crossref]
  4. T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
    [Crossref]
  5. S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
    [Crossref]
  6. T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
    [Crossref]
  7. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
    [Crossref]
  8. H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
    [Crossref]
  9. K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
    [Crossref]
  10. F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
    [Crossref]
  11. G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
    [Crossref]
  12. C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
    [Crossref]
  13. M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
    [Crossref]
  14. D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2012).
    [Crossref]
  15. C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
    [Crossref]
  16. T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
    [Crossref]
  17. J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
    [Crossref]
  18. S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
    [Crossref]
  19. G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
    [Crossref]
  20. L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
    [Crossref]
  21. C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
    [Crossref]
  22. G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
    [Crossref]
  23. Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
    [Crossref]
  24. S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
    [Crossref]
  25. C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
    [Crossref]
  26. R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
    [Crossref]

2017 (3)

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

2016 (2)

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

2015 (1)

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

2014 (1)

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

2013 (1)

J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
[Crossref]

2012 (2)

D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2012).
[Crossref]

Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
[Crossref]

2011 (3)

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

2008 (1)

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

2007 (2)

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

2006 (1)

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[Crossref]

2003 (1)

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

2002 (1)

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

2001 (2)

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

2000 (1)

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
[Crossref]

1999 (2)

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

1996 (1)

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

1995 (1)

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Arakawa, Y.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Aschenbrenner, T.

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

Baek, J. H.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Baumberg, J. J.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Beltz, G. E.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Bowers, J. E.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Braun, M. M.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[Crossref]

Butte, R.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Butté, R.

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

Byrne, D.

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Calle, F.

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

Calleja, E.

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

Cao, H.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Carlin, J. F.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Carlin, J.-F.

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

Carter-Coman, C.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Catalano, M.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Chen, D.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2012).
[Crossref]

Chen, K. T.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Chen, L. F.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Chen, S.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

Chen, Y.-Y.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Cho, H. S.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Choi, J. W.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Choi, Y.-S.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Christmann, G.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Chu, S. N. G.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
[Crossref]

Chung, T. H.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Cingolani, R.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Cosendey, G.

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

Dai, J. J.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Damilano, B.

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Dapkus, P. D.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Dartsch, H.

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

David, A.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

DenBaars, S. P.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Diagne, M.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Ding, T.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Dussaigne, A.

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Fan, F. H.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Feltin, E.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Fernández, S.

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

Figge, S.

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

Figiel, J. J.

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Forchel, A.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Fu, W. Y.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Grandjean, N.

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Grundy, A. J.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Han, J.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2012).
[Crossref]

Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
[Crossref]

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Hommel, D.

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

Hong, B.-S.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Hsu, T.-C.

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Hsu, W. J.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Hu, E. L.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Huang, G.-S.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Huang, K. P.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Ivanov, R.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

Jang, L. W.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Jarman, J.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Jeon, D. W.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Ju, J. W.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Kang, J.-H.

J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
[Crossref]

Kao, C.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Kaufmann, N. A. K.

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

Kavokin, A. V.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Keller, S.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Kern, R. S.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Kish, F. A.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Krames, M. R.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Kruse, C.

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

Kumar, R. V.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Kuo, H.-C.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Kuritzky, L. Y.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Lai, C. F.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Lee, I. H.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Lee, J.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

Lee, M. L.

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Leung, B.

Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
[Crossref]

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Lin, C. F.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Lin, C.-F.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Lin, D.-W.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Lin, Y.-S.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Liu, Y.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Lu, T.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

MacDougal, M. H.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Makarona, E.

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Marcinkevicius, S.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

Massies, J.

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Mathis, S. K.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Minsky, M. S.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Moustakas, T. D.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
[Crossref]

Nakamura, S.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Naranjo, F. B.

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

Natali, F.

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

Ng, H. M.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
[Crossref]

Nurmikko, A.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

Nurmikko, A. V.

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Oliver, R. A.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Ozden, I.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Park, J.

J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
[Crossref]

Park, S. H.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Peng, W.-C.

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Pilon, L.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[Crossref]

Polyakov, A. Y.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Pompe, W.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Ren, C. X.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Romanov, A. E.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Ryu, S.-W.

J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
[Crossref]

Sánchez-García, M. A.

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

Sharma, R.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Shiu, G. Y.

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

Someya, T.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Song, Y. K.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Speck, J. S.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Sun, C. K.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Tsai, T.-L.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Uždavinys, T. K.

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

Vertikov, A.

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

von Hogersthal, G. B.

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Waldrip, K. E.

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Wang, C.-F.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Wang, C.-K.

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Wang, G.

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

Wang, G.-J.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Wang, S.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Weisbuch, C.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

Werner, R.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Xiong, W.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Yang, G. M.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Yang, Z.-J.

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

Yerino, C. D.

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Yun, J. H.

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

Zhang, C.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
[Crossref]

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

Zhou, H.

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

Zhu, T.

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

ACS Appl. Mater. Interface (1)

L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, “Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings,” ACS Appl. Mater. Interface 6, 985–989 (2014).
[Crossref]

ACS Photon. (1)

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example,” ACS Photon. 2, 980–986 (2015).
[Crossref]

Adv. Mater. (1)

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 6, 29138 (2016).
[Crossref]

Appl. Phys. Express (2)

G.-J. Wang, B.-S. Hong, Y.-Y. Chen, Z.-J. Yang, T.-L. Tsai, Y.-S. Lin, and C.-F. Lin, “GaN/AlGaN ultraviolet light-emitting diode with an embedded porous-AlGaN distributed Bragg reflector,” Appl. Phys. Express 10, 122102 (2017).
[Crossref]

J. Park, J.-H. Kang, and S.-W. Ryu, “High diffuse reflectivity of nanoporous GaN distributed Bragg reflector formed by electrochemical etching,” Appl. Phys. Express 6, 072201 (2013).
[Crossref]

Appl. Phys. Lett. (13)

C. K. Sun, S. Keller, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Radiative recombination lifetime measurements of InGaN single quantum well,” Appl. Phys. Lett. 69, 1936–1938 (1996).
[Crossref]

R. Ivanov, S. Marcinkevičius, T. K. Uždavinys, L. Y. Kuritzky, S. Nakamura, and J. S. Speck, “Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells,” Appl. Phys. Lett. 110, 031109 (2017).
[Crossref]

Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Appl. Phys. Lett. 100, 181908 (2012).
[Crossref]

C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T.-C. Hsu, C.-K. Wang, W.-C. Peng, and J. Han, “Shape transformation of nanoporous GaN by annealing: from buried cavities to nanomembranes,” Appl. Phys. Lett. 98, 251910 (2011).
[Crossref]

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2012).
[Crossref]

Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett. 74, 3441–3443 (1999).
[Crossref]

F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80, 2198–2200 (2002).
[Crossref]

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett. 91, 211108 (2007).
[Crossref]

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 2818–2820 (2000).
[Crossref]

K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. 78, 3205–3207 (2001).
[Crossref]

F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett. 82, 499–501 (2003).
[Crossref]

G. Cosendey, J.-F. Carlin, N. A. K. Kaufmann, R. Butté, and N. Grandjean, “Strain compensation in AlInN/GaN multilayers on GaN substrates: application to the realization of defect-free Bragg reflectors,” Appl. Phys. Lett. 98, 181111 (2011).
[Crossref]

Electron. Lett. (1)

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

J. Cryst. Growth (1)

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth 231, 371–390 (2001).
[Crossref]

Phys. Rev. Lett. (1)

S. Christopoulos, G. B. von Hogersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Phys. Status Solidi B (1)

C. Kruse, H. Dartsch, T. Aschenbrenner, S. Figge, and D. Hommel, “Growth and characterization of nitride-based distributed Bragg reflectors,” Phys. Status Solidi B 248, 1748–1755 (2011).
[Crossref]

Sci. Rep. (2)

G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci. Rep. 6, 29138 (2016).
[Crossref]

T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci. Rep. 7, 45344 (2017).
[Crossref]

Science (1)

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Thin Solid Films (1)

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a),(b) Schematic for the fabrication of a highly reflective NP-GaN DBR mirror. (a) Epitaxial growth of λ/4 GaN/n-GaN structures; (b) EC etching to form NP-GaN DBR mirror; (c) top view and (d) cross-sectional SEM images of an NP-GaN DBR sample. The dotted circles imply the position where the undoped GaN layers have been etched due to the vertical etching component in the EC porosification process.
Fig. 2.
Fig. 2. AFM images taken from (a) as-grown GaN thin film, (b) GaN thin film etched in 0.3 M NaNO3 solution, and (c) GaN thin film etched in 0.3 M oxalic acid solution.
Fig. 3.
Fig. 3. (a) Reflectance from the NP-GaN DBR in the blue wavelength region; (b) photograph of a 20.3 cm2 NP-GaN DBR wafer reflecting a card with the Shandong University logo. In (b), the original logo is reddish brown rather than black, which should be related to the shooting angle of the camera.
Fig. 4.
Fig. 4. (a) Photograph of an LED with a 1.9 μm Si-doped n-GaN layer (1050°C); (b) photograph of an LED sample with double n-GaN layers consisting of a 400 nm Si-doped n-GaN layer (900°C) and followed by a 1.5 μm Si-doped n-GaN layer (1050°C); (c) reflectance from the reference LED and the LED with DBRs shown in (b).
Fig. 5.
Fig. 5. (a) Cross-sectional SEM image of the InGaN-based LED regrown on the DBRs. AFM images of regrown InGaN-based LEDs (b) without and (c) with the DBRs; (d) HRXRD patterns of the InGaN-based LEDs, and (e) XRD rocking curves using (0002) diffractions for the LEDs.
Fig. 6.
Fig. 6. (a) LED structures for room-temperature PL spectra (solid line) and reflectance spectrum (dotted line); (b) Voigt fitting curves (dotted line) of PL peaks shown in (a), and (c) TCSPC measurement.
Fig. 7.
Fig. 7. (a) I-V characteristics and (b) room-temperature EL spectra and optical image at a 5 mA current injection.