Abstract

An all-optical light–control–light functionality with the structure of a microfiber knot resonator (MKR) coated with tin disulfide (SnS2) nanosheets is experimentally demonstrated. The evanescent light in the MKR [with a resonance Q of 59,000 and an extinction ratio (ER) of 26  dB] is exploited to enhance light–matter interaction by coating a two-dimensional material SnS2 nanosheet onto it. Thanks to the enhanced light–matter interaction and the strong absorption property of SnS2, the transmitted optical power can be tuned quasi-linearly with an external violet pump light power, where a transmitted optical power variation rate ΔT with respect to the violet light power of 0.22  dB/mW is obtained. In addition, the MKR structure possessing multiple resonances enables a direct experimental demonstration of the relationship between resonance properties (such as Q and ER), and the obtained ΔT variation rate with respect to the violet light power. It verifies experimentally that a higher resonance Q and a larger ER can lead to a higher ΔT variation rate. In terms of the operating speed, this device runs as fast as 3.2  ms. This kind of all-optical light–control–light functional structure may find applications in future all-optical circuitry, handheld fiber sensors, etc.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive all-optical control of light in WS2 coated microfiber knot resonator

Guowei Chen, Zijian Zhang, Xiaoli Wang, Hanguang Li, Mengjiang Jiang, Heyuan Guan, Wentao Qiu, Huihui Lu, Jiangli Dong, Wenguo Zhu, Jianhui Yu, Yongchun Zhong, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 26(21) 27650-27658 (2018)

Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators

Yu Wu, Yun-Jiang Rao, Yi-huai Chen, and Yuan Gong
Opt. Express 17(20) 18142-18147 (2009)

Dynamical range and stability enhancement in electrically fused microknot optical resonators

Alexandra Logvinova, Gal Gottlieb, Shir Shahal, Moti Fridman, and Yoav Linzon
Appl. Opt. 56(20) 5726-5730 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
    [Crossref]
  2. K. A. Williams, “Prospects for electronic photonic integration,” in Integrated Photonics Research (IPR) (Optical Society of America, 2017), paper IW3A.1.
  3. Y. Meng, L. Deng, Z. Liu, H. Xiao, X. Guo, M. Liao, A. Guo, T. Ying, and Y. Tian, “All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure,” Opt. Express 25, 18451–18461 (2017).
    [Crossref]
  4. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
    [Crossref]
  5. X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
    [Crossref]
  6. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [Crossref]
  7. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
    [Crossref]
  8. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  9. M. Liu, X. Zheng, Y. Qi, H. Liu, A. Luo, Z. Luo, W. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
    [Crossref]
  10. A. Luo, M. Liu, X. Wang, Q. Ning, W. Xu, and Z. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3, A69–A78 (2015).
    [Crossref]
  11. L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
    [Crossref]
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  13. C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
    [Crossref]
  14. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  15. Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
    [Crossref]
  16. L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
    [Crossref]
  17. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
    [Crossref]
  18. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
    [Crossref]
  19. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
    [Crossref]
  20. J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
    [Crossref]
  21. J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
    [Crossref]
  22. Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
    [Crossref]
  23. H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
    [Crossref]
  24. G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
    [Crossref]
  25. Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
    [Crossref]
  26. L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
    [Crossref]
  27. W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
    [Crossref]
  28. J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
    [Crossref]
  29. www.mukenano.com .
  30. K. S. Lim, A. A. Jasim, S. S. A. Damanhuri, S. W. Harun, B. M. Azizur Rahman, and H. Ahmad, “Resonance condition of a microfiber knot resonator immersed in liquids,” Appl. Opt. 50, 5912–5916 (2011).
    [Crossref]
  31. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
    [Crossref]
  32. Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
    [Crossref]
  33. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [Crossref]
  34. M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
    [Crossref]
  35. V. K. S. Hsiao, Z. Li, Z. Chen, P. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17, 19988–19995 (2009).
    [Crossref]
  36. D. Zhang, H. Guan, W. Zhu, J. Yu, H. Lu, W. Qiu, J. Dong, J. Zhang, Y. Luo, and Z. Chen, “All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber,” Opt. Express 25, 28536–28546 (2017).
    [Crossref]
  37. J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
    [Crossref]
  38. Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
    [Crossref]

2018 (1)

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

2017 (11)

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
[Crossref]

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Y. Meng, L. Deng, Z. Liu, H. Xiao, X. Guo, M. Liao, A. Guo, T. Ying, and Y. Tian, “All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure,” Opt. Express 25, 18451–18461 (2017).
[Crossref]

D. Zhang, H. Guan, W. Zhu, J. Yu, H. Lu, W. Qiu, J. Dong, J. Zhang, Y. Luo, and Z. Chen, “All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber,” Opt. Express 25, 28536–28546 (2017).
[Crossref]

2016 (3)

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

2015 (6)

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

A. Luo, M. Liu, X. Wang, Q. Ning, W. Xu, and Z. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3, A69–A78 (2015).
[Crossref]

2014 (3)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

M. Liu, X. Zheng, Y. Qi, H. Liu, A. Luo, Z. Luo, W. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
[Crossref]

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

2013 (3)

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
[Crossref]

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

2012 (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

2011 (2)

K. S. Lim, A. A. Jasim, S. S. A. Damanhuri, S. W. Harun, B. M. Azizur Rahman, and H. Ahmad, “Resonance condition of a microfiber knot resonator immersed in liquids,” Appl. Opt. 50, 5912–5916 (2011).
[Crossref]

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

2009 (1)

2007 (1)

2006 (2)

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

1982 (1)

Ahmad, H.

Ahn, J.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Ajayan, P. M.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Azizur Rahman, B. M.

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Behroozpour, B.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Bian, C.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Boser, B. E.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Burton, L. A.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Cao, R.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Chen, J.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Chen, M.

J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
[Crossref]

Chen, Y.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
[Crossref]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

Chen, Z.

Cheng, Y. B.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Cherns, D.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Chodorow, M.

Cotlet, M.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Damanhuri, S. S. A.

Deng, D.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Deng, L.

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Dhanak, V. R.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Dong, B.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Dong, J.

Dong, P.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Du, J.

Du, W.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Fan, D.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Fang, J.

J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
[Crossref]

Fang, L.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Fang, Z.

J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
[Crossref]

Feng, M.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Fermin, D. J.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Gai, L.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Gan, X.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Gao, L.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Ge, S.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Ge, Y.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Guan, H.

Guo, A.

Guo, X.

Y. Meng, L. Deng, Z. Liu, H. Xiao, X. Guo, M. Liao, A. Guo, T. Ying, and Y. Tian, “All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure,” Opt. Express 25, 18451–18461 (2017).
[Crossref]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Guo, Z.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Hadjiev, V. G.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Han, Q.

Han, Z.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Harun, S. W.

Heo, H.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Hesp, D.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Ho Sung, J.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Hou, B.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Hsiao, V. K. S.

Hu, L.

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Huang, B.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Huang, X.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Huang, Y.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Hwang, H.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Jasim, A. A.

Ji, J.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Ji, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, W.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Jiang, X.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Jing, G.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Jo, M.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Kim, K.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Kosyak, V. V.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Lake, R. K.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Lan, X.

Lee, M.

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Lei, S.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Li, C.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Li, J.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Li, S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Li, S. L.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Li, Y.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Li, Z.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

V. K. S. Hsiao, Z. Li, Z. Chen, P. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17, 19988–19995 (2009).
[Crossref]

Liang, W.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Liang, Z.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Liao, M.

Lim, K. S.

Linhart, W. M.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Liu, H.

Liu, M.

Liu, T.

Liu, Y.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Liu, Z.

Y. Meng, L. Deng, Z. Liu, H. Xiao, X. Guo, M. Liao, A. Guo, T. Ying, and Y. Tian, “All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure,” Opt. Express 25, 18451–18461 (2017).
[Crossref]

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Loh, K. P.

Lou, J.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Loya, P. E.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Lu, H.

Lu, L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Lu, S.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Lu, S. B.

Lu, Y.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Luo, A.

Luo, Y.

Luo, Z.

Maharjan, S.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Maksimenko, L. S.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Mao, D.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Matsui, Y.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Mei, L.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Meng, X.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Meng, Y.

Monti, O. L. A.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Neupane, M. R.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Ning, Q.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

O’Dowd, G.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Opanasuk, A. S.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Parkinson, B. A.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Peng, B.

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

Peng, H.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Peng, P.

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Qi, Y.

Qian, X.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Qiu, C.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Qiu, W.

Quack, N.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Racke, D. A.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Reece, C.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Ren, L.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Rudenko, S. P.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Sadowski, J. T.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Sandborn, P. A. M.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Seok, T. J.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Serdega, B. K.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Shao, G.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Shao, H.

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

Shaw, H. J.

Sheng, Q.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Shi, J.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Skelton, J. M.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Song, H. S.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Song, Y.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Stetsenko, M. O.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Stokes, L. F.

Su, G.

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

Sutter, E.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Sutter, P.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Tang, D. Y.

Tang, J.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

V. K. S. Hsiao, Z. Li, Z. Chen, P. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17, 19988–19995 (2009).
[Crossref]

Tang, X.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Tao, W.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Tao, Y.

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

Tian, J.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Tian, Y.

Tong, L.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Tsukagoshi, K.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Ueno, K.

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Veal, T. D.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Vienne, G.

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Voznyi, A. A.

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

Walsh, A.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Wang, D.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Wang, J.

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

Wang, K.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, L.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Wang, P.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Wang, W.

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

Wang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

A. Luo, M. Liu, X. Wang, Q. Ning, W. Xu, and Z. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3, A69–A78 (2015).
[Crossref]

Wang, Y.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Webster, R. F.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Wen, S. C.

Whittles, T. J.

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

Wickramaratne, D.

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Williams, K. A.

K. A. Williams, “Prospects for electronic photonic integration,” in Integrated Photonics Research (IPR) (Optical Society of America, 2017), paper IW3A.1.

Wu, K.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Wu, L.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Wu, M. C.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

Wu, X.

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

Xi, T.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Xia, J.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Xiang, Y.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Xiao, H.

Xiao, Q.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Xiao, W.

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

Xin, W.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Xu, F.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Xu, W.

Xu, Y.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Yang, Q.

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Yang, Y.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Ying, T.

Yu, J.

Yu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Zeng, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Zhang, D.

Zhang, F.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Zhang, H.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

M. Liu, X. Zheng, Y. Qi, H. Liu, A. Luo, Z. Luo, W. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Zhang, J.

D. Zhang, H. Guan, W. Zhu, J. Yu, H. Lu, W. Qiu, J. Dong, J. Zhang, Y. Luo, and Z. Chen, “All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber,” Opt. Express 25, 28536–28546 (2017).
[Crossref]

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Zhang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, C.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Zhao, C.-J.

Zhao, J.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

Zhao, Y.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Zheng, B.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Zheng, J.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Zheng, X.

Zhou, W.

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Zhu, D.

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Zhu, H.

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

Zhu, W.

Zhu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

2D Mater. (1)

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

ACS Nano (1)

Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, and P. Sutter, “Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics,” ACS Nano 8, 10743–10755 (2014).
[Crossref]

Adv. Funct. Mater. (1)

J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X. Meng, “Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors,” Adv. Funct. Mater. 25, 4255–4261 (2015).
[Crossref]

Adv. Mater. (1)

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Adv. Opt. Mater. (2)

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Adv. Sci. (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108, 171905 (2016).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

CrystEngComm (1)

W. Du, D. Deng, Z. Han, W. Xiao, C. Bian, and X. Qian, “Hexagonal tin disulfide nanoplatelets: a new photocatalyst driven by solar light,” CrystEngComm 13, 2071–2076 (2011).
[Crossref]

IEEE J. Solid-State Circuits (1)

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. Solid-State Circuits 52, 161–172 (2017).
[Crossref]

J. Mater. Chem. A (1)

L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” J. Mater. Chem. A 4, 1312–1318 (2016).
[Crossref]

J. Mater. Chem. C (1)

Y. Tao, X. Wu, W. Wang, and J. Wang, “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film,” J. Mater. Chem. C 3, 1347–1353 (2015).
[Crossref]

Laser Phys. Lett. (1)

Z. Liu, M. Feng, W. Jiang, W. Xin, P. Wang, Q. Sheng, Y. Liu, D. Wang, W. Zhou, and J. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10, 065901 (2013).
[Crossref]

Light Sci. Appl. (1)

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4, e360 (2015).
[Crossref]

Micro Nano Lett. (1)

J. Fang, M. Chen, and Z. Fang, “Thickness-dependent photoelectrochemical property of tin disulphide nanosheets,” Micro Nano Lett. 12, 344–346 (2017).
[Crossref]

Nano Lett. (2)

G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application,” Nano Lett. 15, 506–513 (2015).
[Crossref]

J. Ahn, M. Lee, H. Heo, J. Ho Sung, K. Kim, H. Hwang, and M. Jo, “Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals,” Nano Lett. 15, 3703–3708 (2015).
[Crossref]

Nanoscale (1)

H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, and K. Tsukagoshi, “High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits,” Nanoscale 5, 9666–9670 (2013).
[Crossref]

Opt. Commun. (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Opt. Lett. (3)

Photon. Res. (1)

Plasmonics (1)

M. O. Stetsenko, A. A. Voznyi, V. V. Kosyak, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, and A. S. Opanasuk, “Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation,” Plasmonics 12, 1213–1220 (2017).
[Crossref]

RSC Adv. (1)

B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity,” RSC Adv. 6, 5767–5773 (2016).
[Crossref]

Sci. Rep. (1)

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7, 17046 (2017).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Other (2)

K. A. Williams, “Prospects for electronic photonic integration,” in Integrated Photonics Research (IPR) (Optical Society of America, 2017), paper IW3A.1.

www.mukenano.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Microscopic images of the MKR with a loop diameter of D480.6  μm, and the inset shows the waist region of the MF with a diameter of d7.0  μm. (b) Transmission of the MKR structure where the largest obtained ER is 18.0  dB at a resonance wavelength around 1542.3 nm.
Fig. 2.
Fig. 2. (a) Raman spectrum of the SnS2 nanosheets. (b) Absorption spectrum of the SnS2 nanosheets.
Fig. 3.
Fig. 3. (a) Microscopic image of the MKR coated with SnS2 nanosheets. (b) SEM image of the MKR coated with SnS2.
Fig. 4.
Fig. 4. Experimental setup for light amplitude tuning by violet pump light power.
Fig. 5.
Fig. 5. (a) Transmission recorded from the MKR without SnS2 (red curve) and the MKR with SnS2 (green curve). The purple ellipse shows one minor resonance in the MKR without SnS2. (b) Measured normalized transmission spectrum of the MKR without SnS2 (red curve) and the corresponding fitted resonance curve (black circles). The fitted curve is obtained by setting γ=0.033, κr=0.298, and Re(neff)=1.47.
Fig. 6.
Fig. 6. (a) Measured normalized transmission spectra of the MKR with SnS2 (green curve) and the corresponding fitted resonance curve (black circles). The fitted curve is obtained by setting γ=0.673, κr=0.217, and Re(neff)=1.42. (b) Transmission of the MKR structure at different external violet pump light powers. The red, black, brown, cyan, and blue curves correspond to the transmission with external violet pump power of 0, 5.1, 10, 15.3, and 20.2 mW, respectively.
Fig. 7.
Fig. 7. Transmission spectrum of the MKR with SnS2 under different violet pump power excitation within a wavelength range of (a) 1532 nm to 1545 nm, while the two modes highlighted with red ellipses are around 1533 nm and 1544.7 nm, and (b) 1563 nm to 1570 nm, while the two modes highlighted with red ellipses are around 1564 nm and 1569.6 nm.
Fig. 8.
Fig. 8. Linear fit of ΔT versus violet light power for four different resonances at λres=1533  nm (red curve with a correlation coefficient of 93.8%), λres=1544.7  nm (black curve with a correlation coefficient of 98.4%), λres=1564  nm (blue curve with a correlation coefficient of 98.4%), and λres=1569.6  nm (pink curve with a correlation coefficient of 99.5%).
Fig. 9.
Fig. 9. (a) Experimental setup for device response time measurement. (b) Response time of the device at a probe wavelength of 1548 nm with a violet light power of 2.3, 4.4, and 6.3 mW.

Tables (3)

Tables Icon

Table 1. Resonance Properties of Structures in the MKR with and without SnS2

Tables Icon

Table 2. Properties and the Obtained ΔT Variation Rate Associated with the Four Highlighted Resonances in Fig. 7

Tables Icon

Table 3. Performances Comparison of Different Light–Control–Light Structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|T|2=(1γ)2κr[1+sin(βL)]1+κr2+2κrsin(βL),