Abstract

We propose and demonstrate a tapered hollow annular core fiber (HACF) coupler for excitation of whispering-gallery modes (WGMs) of an embedded microsphere resonator. The coupler is simply fabricated by fusion splicing of a segment of HACF with the single-mode fiber (SMF), and then improved by tapering the splicing joint to reduce the cone-apex angle. Therefore, the coupling efficiency from the SMF to the HACF is enhanced to excite various WGMs via evanescent field coupling. Normal positive, negative symmetrical Lorentzian and asymmetric Fano line shapes can be obtained by varying the resonator size and location. Another interesting phenomenon is observed that a higher Q-factor mode in a lower Q-factor mode has a contrast as high as 58. Temperature sensing with good stability is also demonstrated. This embedded WGM microsphere resonator in the tapered HACF is expected to promote environmental adaptability in practical applications due to its simplicity and robustness.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation

Ruohui Wang, Michael Fraser, Jiacheng Li, Xueguang Qiao, and Anbo Wang
Opt. Lett. 40(3) 308-311 (2015)

Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators

Xiaobei Zhang, Yong Yang, Huawen Bai, Jiawei Wang, Ming Yan, Hai Xiao, and Tingyun Wang
Photon. Res. 5(5) 516-520 (2017)

Fano resonances in cone-shaped inwall capillary based microsphere resonator

Xiaobei Zhang, Yong Yang, Haiyang Shao, Huawen Bai, Fufei Pang, Hai Xiao, and Tingyun Wang
Opt. Express 25(2) 615-621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  2. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  3. S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photon. Res. 3, 63–67 (2015).
    [Crossref]
  4. Q. Lu, M. Li, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities,” Opt. Lett. 40, 5842–5845 (2015).
    [Crossref]
  5. J. Liao, X. Wu, L. Liu, and L. Xu, “Fano resonance and improved sensing performance in a spectral-simplified optofluidic micro-bubble resonator by introducing selective modal losses,” Opt. Express 24, 8574–8580 (2016).
    [Crossref]
  6. L. Shi, T. Zhu, D. Huang, C. Liang, M. Liu, and S. Liang, “In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure,” Opt. Lett. 42, 167–170 (2017).
    [Crossref]
  7. Y. L. Shang, M. Y. Ye, and X. M. Lin, “Experimental observation of Fano-like resonance in a whispering-gallery-mode microresonator in aqueous environment,” Photon. Res. 5, 119–123 (2017).
    [Crossref]
  8. K. Zhang, Y. Wang, and Y. H. Wu, “Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator,” Opt. Lett. 42, 2956–2959 (2017).
    [Crossref]
  9. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  10. S. Zheng, Z. Ruan, S. Gao, Y. Long, S. Li, M. He, N. Zhou, J. Du, L. Shen, and X. Cai, “Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform,” Opt. Express 25, 25655–25662 (2017).
    [Crossref]
  11. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref]
  12. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24, 17511–17521 (2016).
    [Crossref]
  13. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  14. S. Wan, R. Niu, H.-L. Ren, C.-L. Zou, G.-C. Guo, and C.-H. Dong, “Experimental demonstration of dissipative sensing in a self-interference microring resonator,” Photon. Res. 6, 681–685 (2018).
    [Crossref]
  15. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  16. F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
    [Crossref]
  17. F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
    [Crossref]
  18. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
    [Crossref]
  19. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
    [Crossref]
  20. A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode optical micro-resonators,” in Atomic, Molecular, and Optical Physics (2010), Vol. 58, pp. 207–323.
  21. R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
    [Crossref]
  22. X. Xue, X. Zheng, and A. M. Weiner, “Soliton trapping and comb self-referencing in a single microresonator with χ(2) and χ(3) nonlinearities,” Opt. Lett. 42, 4147–4150 (2017).
    [Crossref]
  23. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  24. D. Huang, L. Shi, M. Liu, M. Deng, T. Zhu, and W. Huang, “In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining,” Opt. Lett. 40, 3770–3773 (2015).
    [Crossref]
  25. G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.
  26. T. Siegle, J. Kellerer, M. Bonenberger, S. Krämmer, C. Klusmann, M. Müller, and H. Kalt, “Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers,” Opt. Express 26, 3579–3593 (2018).
    [Crossref]
  27. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref]
  28. F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
    [Crossref]
  29. A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
    [Crossref]
  30. K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38, 1301–1303 (2013).
    [Crossref]
  31. R. Wang, M. Fraser, J. Li, X. Qiao, and A. Wang, “Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation,” Opt. Lett. 40, 308–311 (2015).
    [Crossref]
  32. H. Wang, X. Lan, J. Huang, L. Yuan, C. W. Kim, and H. Xiao, “Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator,” Opt. Express 21, 15834–15839 (2013).
    [Crossref]
  33. X. Zhang, Y. Yang, H. Shao, H. Bai, F. Pang, H. Xiao, and T. Wang, “Fano resonances in cone-shaped inwall capillary based microsphere resonator,” Opt. Express 25, 615–621 (2017).
    [Crossref]
  34. X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
    [Crossref]
  35. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39, 5267–5270 (2014).
    [Crossref]
  36. J. Yang, L. Yuan, S. Cao, and X. Zhu, “Coupling model of standard single-mode and capillary fiber,” Appl. Opt. 48, 5624–5628 (2009).
    [Crossref]
  37. X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
    [Crossref]
  38. F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
    [Crossref]

2018 (4)

S. Wan, R. Niu, H.-L. Ren, C.-L. Zou, G.-C. Guo, and C.-H. Dong, “Experimental demonstration of dissipative sensing in a self-interference microring resonator,” Photon. Res. 6, 681–685 (2018).
[Crossref]

T. Siegle, J. Kellerer, M. Bonenberger, S. Krämmer, C. Klusmann, M. Müller, and H. Kalt, “Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers,” Opt. Express 26, 3579–3593 (2018).
[Crossref]

X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
[Crossref]

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

2017 (11)

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
[Crossref]

X. Xue, X. Zheng, and A. M. Weiner, “Soliton trapping and comb self-referencing in a single microresonator with χ(2) and χ(3) nonlinearities,” Opt. Lett. 42, 4147–4150 (2017).
[Crossref]

X. Zhang, Y. Yang, H. Shao, H. Bai, F. Pang, H. Xiao, and T. Wang, “Fano resonances in cone-shaped inwall capillary based microsphere resonator,” Opt. Express 25, 615–621 (2017).
[Crossref]

X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
[Crossref]

L. Shi, T. Zhu, D. Huang, C. Liang, M. Liu, and S. Liang, “In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure,” Opt. Lett. 42, 167–170 (2017).
[Crossref]

Y. L. Shang, M. Y. Ye, and X. M. Lin, “Experimental observation of Fano-like resonance in a whispering-gallery-mode microresonator in aqueous environment,” Photon. Res. 5, 119–123 (2017).
[Crossref]

K. Zhang, Y. Wang, and Y. H. Wu, “Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator,” Opt. Lett. 42, 2956–2959 (2017).
[Crossref]

S. Zheng, Z. Ruan, S. Gao, Y. Long, S. Li, M. He, N. Zhou, J. Du, L. Shen, and X. Cai, “Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform,” Opt. Express 25, 25655–25662 (2017).
[Crossref]

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

2016 (2)

2015 (4)

2014 (2)

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39, 5267–5270 (2014).
[Crossref]

2013 (4)

H. Wang, X. Lan, J. Huang, L. Yuan, C. W. Kim, and H. Xiao, “Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator,” Opt. Express 21, 15834–15839 (2013).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38, 1301–1303 (2013).
[Crossref]

2012 (2)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

2011 (1)

A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

2009 (1)

2006 (2)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

1999 (1)

1997 (1)

Bai, H.

Berneschi, S.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Birks, T. A.

Bonenberger, M.

Breunig, I.

Buse, K.

Cai, X.

Cao, S.

Carmon, T.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

Chen, W.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Cheung, G.

Clements, W. R.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Conti, G. N.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Cosi, F.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Deng, M.

Dispenza, M.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Dong, C. H.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Dong, C.-H.

Du, J.

Fang, W.

F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Francois, A.

A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

Fraser, M.

Friedlein, J.

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Gao, S.

Gong, Q.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Gorodetsky, M. L.

Gu, F.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Guo, G.-C.

He, L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

He, M.

Huang, D.

Huang, J.

Huang, W.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

Jacques, F.

Jiang, X.

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Jiang, X. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Kalt, H.

Kellerer, J.

Kim, C. W.

Kippenberg, T. J.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode optical micro-resonators,” in Atomic, Molecular, and Optical Physics (2010), Vol. 58, pp. 207–323.

Klebanov, M.

Klusmann, C.

Knight, J. C.

Kosma, K.

Krämmer, S.

Lan, X.

Lan, Y.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Levy, S.

Li, B. B.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Li, J.

Li, M.

Li, S.

Liang, C.

Liang, S.

Liao, J.

Lin, X.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Lin, X. M.

Linghu, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Liu, L.

Liu, M.

Liu, N.

Liu, S.

Liu, Y.

Liu, Z.

Loncar, M.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Long, Y.

Lu, Q.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Merrer, P.-H.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Monifi, F.

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Monro, T. M.

A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

Müller, M.

Niu, R.

Nori, F.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Özdemir, S. K.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Pan, H.

X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
[Crossref]

Pang, F.

Pelli, S.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Peng, B.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Pissadakis, S.

Qiao, X.

Qin, B.

Ren, H.-L.

Righini, G. C.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Rokhsari, H.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

Rowland, K. J.

A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

Ruan, Z.

Schliesser, A.

A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode optical micro-resonators,” in Atomic, Molecular, and Optical Physics (2010), Vol. 58, pp. 207–323.

Schuster, K.

Secchi, A.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Shang, Y. L.

Shao, H.

Shao, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shen, L.

Shi, L.

Shu, F.

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

Siegle, T.

Soria, S.

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

Sun, F. W.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Tong, L.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Vahala, K. J.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Vollmer, F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Wan, S.

Wang, A.

Wang, H.

Wang, J.

X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
[Crossref]

X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
[Crossref]

Wang, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Wang, R.

Wang, T.

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Y.

Weiner, A. M.

Wiersig, J.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Wolf, R.

Wu, X.

Wu, Y. H.

Xiao, H.

Xiao, Y. F.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Xie, F.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Xu, L.

Xu, X.

Xue, X.

Yan, L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Yan, M.

X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
[Crossref]

X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
[Crossref]

Yang, J.

Yang, L.

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Yang, Y.

Yao, N.

Ye, M. Y.

Yi, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Yu, X. C.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Yuan, L.

Yuan, S.

Zadok, A.

Zappe, H.

Zeng, H.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Zhang, K.

Zhang, S. X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, G.

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

Zheng, S.

Zheng, X.

Zhou, A.

Zhou, N.

Zhu, S.

Zhu, T.

Zhu, X.

Zhu, Z.

Zhuang, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, F. Gu, H. Wang, N. Yao, S. Zhuang, and W. Fang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Zito, G.

Zou, C. L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Zou, C.-L.

Adv. Mater. (2)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, L. Yan, F. W. Sun, Y. Lan, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Francois, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

IEEE Photon. J. (1)

X. Zhang, H. Bai, H. Pan, J. Wang, M. Yan, H. Xiao, and T. Wang, “In-line fiber Michelson interferometer for enhancing the Q factor of cone-shaped inwall capillary coupled resonators,” IEEE Photon. J. 10, 6801808 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Monifi, S. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Nanophotonics (2)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Shu, X. Jiang, G. Zhao, and L. Yang, “A scatterer-assisted whispering-gallery-mode microprobe,” Nanophotonics 7, 1455–1460 (2018).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (9)

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38, 1301–1303 (2013).
[Crossref]

R. Wang, M. Fraser, J. Li, X. Qiao, and A. Wang, “Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation,” Opt. Lett. 40, 308–311 (2015).
[Crossref]

D. Huang, L. Shi, M. Liu, M. Deng, T. Zhu, and W. Huang, “In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining,” Opt. Lett. 40, 3770–3773 (2015).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39, 5267–5270 (2014).
[Crossref]

X. Xue, X. Zheng, and A. M. Weiner, “Soliton trapping and comb self-referencing in a single microresonator with χ(2) and χ(3) nonlinearities,” Opt. Lett. 42, 4147–4150 (2017).
[Crossref]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[Crossref]

Q. Lu, M. Li, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities,” Opt. Lett. 40, 5842–5845 (2015).
[Crossref]

K. Zhang, Y. Wang, and Y. H. Wu, “Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator,” Opt. Lett. 42, 2956–2959 (2017).
[Crossref]

L. Shi, T. Zhu, D. Huang, C. Liang, M. Liu, and S. Liang, “In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure,” Opt. Lett. 42, 167–170 (2017).
[Crossref]

Photon. Res. (5)

Science (1)

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Other (2)

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CK_P9.

A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode optical micro-resonators,” in Atomic, Molecular, and Optical Physics (2010), Vol. 58, pp. 207–323.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the tapered HACF coupled microsphere resonator. (b) Cross-sectional view with the inset as the simulated mode field distribution and (c) RI profile of HACF.
Fig. 2.
Fig. 2. (a) Schematic of splicing HACF with SMF. (b) Schematic of tapering the area, with the cone-apex angle as θ and the single tapering distance as d1. (c) Micrograph of SMF-HACF transition area without tapering, with the multi-mode transition area highlighted in the blue dotted box. Micrographs of (d) SMF-HACF transition area with tapering, (e) microsphere resonator manipulated by a section of tapered fiber, and (f) microsphere resonator embedded into the coupler.
Fig. 3.
Fig. 3. (a) Simulation of the coupling efficiency as a function of cone-apex angle θ, with the inset as the energy distribution in the device. (b) Taper times versus the cone-apex angle θ by experimental and theoretical fitting results.
Fig. 4.
Fig. 4. (a) Cross section of the model. (b),(c) Model of the microsphere (b) without and (c) with being locked by the HACF. (d) Evolution of reflection spectra with t11 from 0.8 to 0.995 for the case of (b). (e) Reflection spectrum for the case of (c).
Fig. 5.
Fig. 5. (a) Experiment results and simulation results of the device with a 42.30 μm diameter microsphere in the position very close to the end face. Experiment results of the device with a 42.60 μm diameter microsphere in the position very close to the end face, shown as symmetric Lorentzian line shapes with Q-factors about (b) 1300 and 76,000, and (c) 1700 and 35,000. (d) Experiment results of the device with microsphere locked by HACF inner wall with insets corresponding to detailed views of the negative symmetrical Lorentzian, asymmetrical Fano, and positive symmetrical Lorentzian line shapes.
Fig. 6.
Fig. 6. Temperature response of the device, with inset as the reflection spectra under different temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PR=|i=1m2φiπ{re2jδ2[(ti1τti2p21τti1ti2p2)2+(ti2τti1p21τti1ti2p2)2]τ(1ti12)(1ti22)p1τti1ti2p2}|2,