Abstract

Quantum dots (QDs) can achieve high quantum yields close to unity in liquid solutions, whereas they exhibit a decreased conversion efficiency after being integrated into solid-state polymer matrices for light-emitting diode (LED) devices, which is called the host matrix effect. In this study, we propose a solid–liquid hybrid-state QD-LED to solve this issue. The ethylene-terminated polydimethylsiloxane (ethylene-PDMS) is used to establish a solid-state cross-linked network, whereas the methyl-terminated PDMS (methyl-PDMS) is used in its liquid state. From a macroscopic level, the cured solid–liquid hybrid-state PDMS (SLHP) composites reach a solid state, which is stable and flexible enough to be used in LED devices. Compared with LEDs using conventional QD/solid PDMS composites at equal color conversion efficiency ranging from 40% to 60%, the luminous flux of LEDs with QD/SLHP composites is increased by 13.0% using an optimized methyl-PDMS concentration of 85 wt. %. As a result, high efficiency QD-LEDs using QDs as the only color convertor with luminous efficacy of 89.6 lm/W (0.19 A) were achieved, which show a working stability comparable with that using conventional solid-state structures at a harsh condition. Consequently, the novel approach shows great potential for achieving high efficiency and high stability QD-LEDs, which is also compatible with current structures used in illumination and display applications.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Quantum dot white LEDs with high luminous efficiency

Sadra Sadeghi, Baskaran Ganesh Kumar, Rustamzhon Melikov, Mohammad Mohammadi Aria, Houman Bahmani Jalali, and Sedat Nizamoglu
Optica 5(7) 793-802 (2018)

Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays

Juan He, Haiwei Chen, Hao Chen, Yanan Wang, Shin-Tson Wu, and Yajie Dong
Opt. Express 25(11) 12915-12925 (2017)

Optimization of nano-honeycomb structures for flexible w-LEDs

Huang-Yu Lin, Yung-Min Pai, Jing-xing Shi, Xin-Yin Chen, Chung-Hsiang Lin, Chih-Ming Weng, Tzu-Yu Chen, Chien-Chung Lin, Martin David Brian Charlton, Yi-Pai Huang, Chyong-Hua Chen, Huang-Ming Philip Chen, and Hao-Chung Kuo
Opt. Express 25(17) 20466-20476 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
    [Crossref]
  2. P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
    [Crossref]
  3. I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
    [Crossref]
  4. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
    [Crossref]
  5. T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
    [Crossref]
  6. S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
    [Crossref]
  7. A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
    [Crossref]
  8. A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
    [Crossref]
  9. H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
    [Crossref]
  10. B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
    [Crossref]
  11. Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
    [Crossref]
  12. A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
    [Crossref]
  13. S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
    [Crossref]
  14. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
    [Crossref]
  15. Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
    [Crossref]
  16. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
    [Crossref]
  17. X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
    [Crossref]
  18. J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
    [Crossref]
  19. M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
    [Crossref]
  20. X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
    [Crossref]
  21. R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
    [Crossref]
  22. L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
    [Crossref]
  23. L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
    [Crossref]
  24. J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
    [Crossref]
  25. W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
    [Crossref]
  26. Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
    [Crossref]
  27. R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
    [Crossref]
  28. J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
    [Crossref]
  29. S. D. Yu, Y. Tang, Z. T. Li, K. H. Chen, X. R. Ding, and B. H. Yu, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6, 90–98 (2018).
    [Crossref]
  30. Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
    [Crossref]
  31. S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42, 4962–4965 (2017).
    [Crossref]
  32. F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
    [Crossref]
  33. K. T. Shimizu, M. Böhmer, D. Estrada, S. Gangwal, S. Grabowski, H. Bechtel, E. Kang, K. J. Vampola, D. Chamberlin, and O. B. Shchekin, “Toward commercial realization of quantum dot based white light-emitting diodes for general illumination,” Photon. Res. 5, A1–A6 (2017).
    [Crossref]
  34. T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
    [Crossref]
  35. S. Sadeghi, B. G. Kumar, R. Melikov, M. M. Aria, H. B. Jalali, and S. Nizamoglu, “Quantum dot white LEDs with high luminous efficiency,” Optica 5, 793–802 (2018).
    [Crossref]
  36. H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
    [Crossref]
  37. A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
    [Crossref]
  38. K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
    [Crossref]
  39. L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
    [Crossref]
  40. A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
    [Crossref]
  41. J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
    [Crossref]
  42. X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
    [Crossref]
  43. S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
    [Crossref]
  44. W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
    [Crossref]
  45. Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
    [Crossref]
  46. J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
    [Crossref]
  47. B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
    [Crossref]

2018 (7)

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

S. D. Yu, Y. Tang, Z. T. Li, K. H. Chen, X. R. Ding, and B. H. Yu, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6, 90–98 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

S. Sadeghi, B. G. Kumar, R. Melikov, M. M. Aria, H. B. Jalali, and S. Nizamoglu, “Quantum dot white LEDs with high luminous efficiency,” Optica 5, 793–802 (2018).
[Crossref]

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

2017 (7)

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42, 4962–4965 (2017).
[Crossref]

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

K. T. Shimizu, M. Böhmer, D. Estrada, S. Gangwal, S. Grabowski, H. Bechtel, E. Kang, K. J. Vampola, D. Chamberlin, and O. B. Shchekin, “Toward commercial realization of quantum dot based white light-emitting diodes for general illumination,” Photon. Res. 5, A1–A6 (2017).
[Crossref]

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

2016 (2)

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
[Crossref]

2015 (8)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
[Crossref]

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

2014 (9)

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

2013 (2)

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

2012 (3)

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

2010 (2)

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

2009 (1)

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

2008 (1)

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

2007 (1)

J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
[Crossref]

2006 (1)

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

2005 (1)

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

2001 (1)

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

2000 (1)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Aboulaich, A.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Alger, J. S.

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

Alivisatos, A. P.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Allen, P. M.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Anni, M.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Aria, M. M.

Bae, B.-S.

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

Bae, J.-Y.

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

Bahadur, M.

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

Bardet, M.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Bawendi, M. G.

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Baxter, P. N. W.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Bechtel, H.

Bisquert, J.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Böhmer, M.

Brokken-Zijp, J.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Bulovic, V.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

Cai, B.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Cao, K.

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

Chadeyron, G.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Chamberlin, D.

Chandezon, F.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Chen, H.

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Chen, H. W.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Chen, H.-C.

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Chen, J.

Chen, K. H.

Chen, K. J.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Chen, K.-J.

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Chen, T.-M.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Chen, X.

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Chen, Y.-H.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

Chien, S.-H.

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Choa, Y. H.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Choi, Y. M.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Coropceanu, I.

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref]

Cretí, A.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Dai, D.

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Della Sala, F.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Deloncle, R.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Deschamps, J.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Ding, X.

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

Ding, X. R.

Ding, X.-R.

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Dong, Y. J.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Duan, W.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Duan, X.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Eom, N. S.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Esteves, A. C. C.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Estrada, D.

Evans, D. G.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Fan, J.

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Fei, L.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Fiore, A.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Fu, C. C.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Gangwal, S.

Gao, H.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Gaponik, N.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Gerion, D.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Grabowski, S.

Greytak, A. B.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Gromova, M.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Gu, H.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Guo, X.

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Han, C.-S.

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

Han, H. V.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Han, H.-V.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Hao, J.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

Hartmann, L.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

He, J.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Heine, J. R.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Hong, A.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

Hsu, S.-C.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

Hu, R.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
[Crossref]

Hu, W.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Hua, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Huang, C.-C.

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Huang, R.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Huang, Y.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Huinink, H. P.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Jalali, H. B.

Jang, H. S.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

Jang, J.

J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
[Crossref]

Jensen, K. F.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Jeong, S.

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

Jiang, C.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Jiao, S.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Jin, J.

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

Jin, L.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Joo, S. W.

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Julien-Rabant, C.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Kang, E.

Kim, B. S.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Kim, C. K.

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Kim, J. H.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

Kim, K. N.

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

Kim, S.

J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
[Crossref]

Kim, T.

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Kim, T. S.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Kim, Y. H.

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

Kong, L.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Kuga, Y.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Kumar, A.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Kumar, B. G.

Kuo, H. C.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Kuo, H.-C.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Kwon, Y. T.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Lanzani, G.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Laven, J.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Lee, C. G.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

Lee, H.

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Lee, J.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Lee, K.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Lee, K. J.

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
[Crossref]

Lee, S. L.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Leo, G.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Lesnyak, V.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Lesyuk, R.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Li, C.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Li, F.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

Li, H.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Li, H. L.

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

Li, J.

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

Li, J. R.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Li, J. S.

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Li, M. C.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Li, W.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

Li, X.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Li, Y.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Li, Z.

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42, 4962–4965 (2017).
[Crossref]

Li, Z. T.

S. D. Yu, Y. Tang, Z. T. Li, K. H. Chen, X. R. Ding, and B. H. Yu, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6, 90–98 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

Li, Z.-T.

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Liang, R.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Liang, X.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Lin, C. C.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Lin, C.-C.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Lin, H.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Lin, N.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Lin, P.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Lin, S.-L.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

Liu, H.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

Liu, J. Q.

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

Liu, Q.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

Liu, S.

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

Liu, W.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Liu, X.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Liu, Y.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Liu, Z.

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

Lomascolo, M.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Lu, Y. Q.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Luo, C.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Luo, X.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
[Crossref]

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

Ma, L.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Ma, R.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Ma, X.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Mahiou, R.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Manna, L.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Melikov, R.

Meng, X.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Meng, Z.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Michalska, M.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Moraseró, I.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Nizamoglu, S.

Nocera, D. G.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Noh, M.

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

Norris, A. W.

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

Pan, C.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

Pan, S.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Pan, Z.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Pansu, R. B.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Parak, W. J.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Park, S. H.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

Pei, L.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Peng, H.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Peng, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Pinaud, F.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Popovic, Z.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Popovych, D.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Potdevin, A.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Pust, P.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
[Crossref]

Qi, R.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Rao, L.

Rao, L. S.

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

Rao, L.-S.

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Reiss, P.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Reuter, U.

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Reuvers, N. J. W.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Rossi, M. Z.

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Sadeghi, S.

Schmidt, P. J.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
[Crossref]

Schneider, R.

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

Schnick, W.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
[Crossref]

Shchekin, O. B.

Shen, Q.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Shen, T. L.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Sher, C. W.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Shi, W.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Shih, M. H.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Shih, M.-H.

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Shimizu, K. T.

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

Song, X.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Sun, K.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

Sun, Z.

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

Sundar, V. C.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

Tang, Y.

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

S. D. Yu, Y. Tang, Z. T. Li, K. H. Chen, X. R. Ding, and B. H. Yu, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6, 90–98 (2018).
[Crossref]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42, 4962–4965 (2017).
[Crossref]

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

Tian, R.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Travas-sejdic, J.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Tu, Z.-Y.

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

Vampola, K. J.

Van, M. P.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Walker, B.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Wang, B.

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Wang, C.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

Wang, H.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Wang, J.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Wang, K.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

Wang, K. Y.

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

Wang, X.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

Wang, Y.

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Wei, M.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Weiss, S.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Welker, M.

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

Williams, S. C.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Windiate, C. C.

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

With, G. D.

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Woo, J. Y.

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

Wu, S. T.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Xia, Z.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

Xiang, W.

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

Xie, B.

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
[Crossref]

Xie, R. J.

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

Xu, C.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Xu, J.

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Xuan, T. T.

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

Yan, C.

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

Yan, D.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Yan, X.

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

Yang, H.

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

Young, E. R.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Yu, B.

Yu, B. H.

Yu, B.-H.

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

Yu, S.

Yu, S. D.

S. D. Yu, Y. Tang, Z. T. Li, K. H. Chen, X. R. Ding, and B. H. Yu, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6, 90–98 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

Yu, S. F.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Yu, X.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Yu, Y.

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Yuan, X.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Zanchet, D.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Zarisfi, A.

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

Zeng, H.

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Zhang, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Zhang, L.

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Zhang, R.

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Zhang, W.

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Zhao, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Zhao, K.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Zhong, X.

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

Zhu, R. D.

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Zhuang, B.

ACS Appl. Mater. Interfaces (5)

A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou, “Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index,” ACS Appl. Mater. Interfaces 6, 252–258 (2013).
[Crossref]

H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, and Y. Wang, “Phosphor-in-glass for high-powered remote-type white AC-LED,” ACS Appl. Mater. Interfaces 6, 21264–21269 (2014).
[Crossref]

Y. H. Kim, J.-Y. Bae, J. Jin, and B.-S. Bae, “Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant,” ACS Appl. Mater. Interfaces 6, 3115–3121 (2014).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 8659–8666 (2015).
[Crossref]

S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang, “Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes,” ACS Appl. Mater. Interfaces 7, 6764–6771 (2015).
[Crossref]

ACS Nano (2)

L. Hartmann, A. Kumar, M. Welker, A. Fiore, C. Julien-Rabant, M. Gromova, M. Bardet, P. Reiss, P. N. W. Baxter, F. Chandezon, and R. B. Pansu, “Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution,” ACS Nano 6, 9033–9041 (2012).
[Crossref]

S. Jiao, Q. Shen, I. Moraseró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, “Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano 9, 908–915 (2015).
[Crossref]

Adv. Funct. Mater. (2)

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27, 1700051 (2017).
[Crossref]

B. Xie, H. Liu, R. Hu, C. Wang, J. Hao, K. Wang, and X. Luo, “Targeting cooling for quantum dots in white QDs‐LEDs by hexagonal boron nitride platelets with electrostatic bonding,” Adv. Funct. Mater. 28, 1801407 (2018).
[Crossref]

Adv. Mater. (2)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

X. Wang, X. Yan, W. Li, and K. Sun, “Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors,” Adv. Mater. 24, 2742–2747 (2012).
[Crossref]

Angew. Chem. Int. Ed. (1)

X. Li, Y. Liu, X. Song, H. Wang, H. Gu, and H. Zeng, “Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes,” Angew. Chem. Int. Ed. 54, 1759–1764 (2014).
[Crossref]

Appl. Phys. Lett. (1)

W. Zhang, D. Dai, X. Chen, X. Guo, and J. Fan, “Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption,” Appl. Phys. Lett. 104, 091902 (2014).
[Crossref]

Carbon (1)

W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, and P. Lin, “Large-area color controllable remote carbon white-light light-emitting diodes,” Carbon 85, 344–350 (2015).
[Crossref]

Chem. Commun. (1)

J. Jang, S. Kim, and K. J. Lee, “Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization,” Chem. Commun. 26, 2689–2691 (2007).
[Crossref]

Chem. Mater. (2)

T. T. Xuan, J. Q. Liu, R. J. Xie, H. L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27, 1187–1193 (2015).
[Crossref]

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26, 2595–2600 (2014).
[Crossref]

Chem. Sci. (1)

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. 3, 2028–2034 (2012).
[Crossref]

Colloids Surf. A (1)

M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, “Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots,” Colloids Surf. A 359, 39–44 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Li, Y. Tang, Z.-T. Li, Z. Li, X.-R. Ding, and L.-S. Rao, “Investigation of the emission spectral properties of carbon dots in packaged LEDs using TiO2 nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23, 2000507 (2017).
[Crossref]

IEEE Photon. J. (1)

S.-C. Hsu, Y.-H. Chen, Z.-Y. Tu, H.-V. Han, S.-L. Lin, T.-M. Chen, H.-C. Kuo, and C.-C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1601210 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[Crossref]

IEEE Trans. Electron Devices (2)

J. S. Li, Y. Tang, Z.-T. Li, X.-R. Ding, L.-S. Rao, and B.-H. Yu, “Effect of quantum dot scattering and absorption on the optical performance of white light-emitting diodes,” IEEE Trans. Electron Devices 65, 2877–2884 (2018).
[Crossref]

Y. Tang, Z. Li, Z. T. Li, J. S. Li, S. D. Yu, and L. S. Rao, “Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles,” IEEE Trans. Electron Devices 65, 158–164 (2018).
[Crossref]

J. Electron. Packag. (1)

B. Xie, R. Hu, and X. Luo, “Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives,” J. Electron. Packag. 138, 020803 (2016).
[Crossref]

J. Mater. Chem. C (1)

L. Ma, W. Xiang, H. Gao, L. Pei, X. Ma, Y. Huang, and X. Liang, “Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes,” J. Mater. Chem. C 3, 6764–6770 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. T. Kwon, N. S. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee, K. J. Lee, and Y. H. Choa, “Improvement of dispersion stability and optical properties of CdSe/ZnSe structured quantum dots by polymer coating,” J. Nanosci. Nanotechnol. 14, 7636–7640 (2014).
[Crossref]

J. Phys. Chem. B (1)

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).
[Crossref]

Light Sci. Appl. (1)

H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, “Going beyond the limit of an LCD’s color gamut,” Light Sci. Appl. 6, e17043 (2017).
[Crossref]

Nano Lett. (1)

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref]

Nanoscale (2)

T. L. Shen, K. J. Chen, C. W. Sher, H. V. Han, K. Y. Wang, J. R. Li, C. C. Lin, M. H. Shih, C. C. Fu, and H. C. Kuo, “High quality liquid-type quantum dots white light-emitting diode,” Nanoscale 8, 1117–1122 (2016).
[Crossref]

K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien, C.-C. Huang, T.-M. Chen, M.-H. Shih, and H.-C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale 6, 5378–5383 (2014).
[Crossref]

Nanotechnology (3)

J. Li, Y. Tang, Z. Li, K. Cao, C. Yan, and X. Ding, “Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect,” Nanotechnology 29, 295707 (2018).
[Crossref]

J. Y. Woo, K. N. Kim, S. Jeong, and C.-S. Han, “Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED,” Nanotechnology 21, 495704 (2010).
[Crossref]

L. Kong, L. Zhang, Z. Meng, C. Xu, N. Lin, and X. Liu, “Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting,” Nanotechnology 29, 315203 (2018).
[Crossref]

Nat. Mater. (1)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14, 454–458 (2015).
[Crossref]

Nat. Photonics (1)

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7, 13–23 (2013).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Opt. Lett. (1)

Optica (1)

Photon. Res. (2)

Phys. Rev. B (1)

A. Cretí, M. Anni, M. Z. Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects,” Phys. Rev. B 72, 125346 (2005).
[Crossref]

Polymer (1)

A. C. C. Esteves, J. Brokken-Zijp, J. Laven, H. P. Huinink, N. J. W. Reuvers, M. P. Van, and G. D. With, “Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed,” Polymer 50, 3955–3966 (2009).
[Crossref]

Proc. SPIE (1)

A. W. Norris, M. Bahadur, A. Zarisfi, J. S. Alger, and C. C. Windiate, “Silicone materials for LED packaging,” Proc. SPIE 6337, 63370F (2006).
[Crossref]

RSC Adv. (1)

Y. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, and H. Peng, “Aggregation induced red shift emission of phosphorus doped carbon dots,” RSC Adv. 7, 32225–32228 (2017).
[Crossref]

Small Methods (1)

R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych, and V. Lesnyak, “Quantum‐dot‐in‐polymer composites via advanced surface engineering,” Small Methods 1, 1700189 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) SLHP with methyl-PDMS concentrations of 80 wt. %, 85 wt. %, and 90 wt. % after curing at 125°C for 90 min, respectively. (b)–(c) LED images with QD/SLHP packaging structure (concentrations of QDs and methyl-PDMS are 0.8 and 85 wt. %, respectively) under injection currents of 0 and 2 mA, respectively. (d)–(e) LED images with QD/SP packaging structure (concentrations of QDs and methyl-PDMS are 0.8 and 0, respectively) under injection currents of 0 and 2 mA, respectively. Images of (f) QD/SP film (0.3 wt. % QDs), (g) SP film, (h) QD/SLHP film (0.3 wt. % QD and 85 wt. % methyl-PDMS), and (i) SLHP film (85 wt. % methyl-PDMS).
Fig. 2.
Fig. 2. Infrared transmittance spectra of methyl-PDMS, ethylene-PDMS, cured SP, and cured SLHP with 15 wt. % methyl-PDMS.
Fig. 3.
Fig. 3. Total radiant power and luminous flux of LEDs with QD/SLHP composites for different methyl-PDMS concentrations; the QD concentration is kept at 0.6 wt. %.
Fig. 4.
Fig. 4. Infrared transmittance spectrum of CdSe/ZnS QDs.
Fig. 5.
Fig. 5. Fabrication method for QD/SLHP composites. The liquid methyl-PDMS provides a flexible environment to prevent ligands on QD surfaces from being dragged away by the cross-linked ethylene-PDMS network.
Fig. 6.
Fig. 6. (a) Transmittance, haze, absorption, and reflection spectra of SP film and SLHP film (with 85 wt. % methyl-PDMS). (b)–(d) Absorption spectra of QD/SP film and QD/SLHP film with QD concentrations of 0.3 wt. %, 0.5 wt. %, and 0.8 wt. %, respectively.
Fig. 7.
Fig. 7. (a) Total radiant power, luminous flux, (b) radiant power of chip light, and radiant power of QD light of LEDs with QD/SLHP composites and QD/SP composites at different QD concentrations. (c) CCE of LEDs with QD/SLHP composites and QD/SP composites at different QD concentrations; their total radiant power and luminous flux for different CCEs.
Fig. 8.
Fig. 8. Emission spectra of LEDs with (a) QD/SLHP composites and (b) QD/SP composites at different QD concentrations.
Fig. 9.
Fig. 9. LFM of LEDs with QD/SLHP composites and QD/SP composites after nonworking aging (aging current of 0 A) and working aging with a harsh condition (aging current of 0.19 A); the QD concentration is kept at 0.6 wt. %.