Abstract

When a dielectric meta-atom is placed into a subwavelength metallic aperture, 20-fold enhanced electromagnetic transmission through the aperture is realized at the meta-atom’s resonant frequency. Additionally, when the incident electromagnetic power increases, thermal energy gathered by the meta-atom, which is converted from electromagnetic losses, can cause the meta-atom’s temperature to increase. Because of the high temperature coefficient of the meta-atom’s resonant frequency, this temperature increase causes a blueshift in the transmission peak. Therefore, this frequency-dependent enhanced electromagnetic transmission even produces a nonlinear effect at low incident powers. Over an incident power range from 0 to 20 dBm, measured and simulated spectra near the meta-atom’s resonant frequency show distinctly nonlinear transmission.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable artificial microwave blackbodies based on metasurfaces

Yunsheng Guo, Xiaojuan Hou, Xiaolong Lv, Ke Bi, Ming Lei, and Ji Zhou
Opt. Express 25(21) 25879-25885 (2017)

Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor

Peng-Yuan Wang, Tao Jin, Fan-Yi Meng, Yue-Long Lyu, Daniel Erni, Qun Wu, and Lei Zhu
Opt. Express 26(9) 12318-12329 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [Crossref]
  3. J. A. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13, 636–647 (2005).
    [Crossref]
  4. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [Crossref]
  5. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [Crossref]
  6. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [Crossref]
  7. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
    [Crossref]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [Crossref]
  9. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
    [Crossref]
  10. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
    [Crossref]
  11. K. B. Alici and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4, 286–288 (2010).
    [Crossref]
  12. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [Crossref]
  13. R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
    [Crossref]
  14. L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
    [Crossref]
  15. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
    [Crossref]
  16. R. Tsu and M. A. Fiddy, “Generalization of the effects of high Q for metamaterials,” Photon. Res. 1, 77–87 (2013).
    [Crossref]
  17. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
    [Crossref]
  18. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  19. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  20. Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref]
  21. K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
    [Crossref]
  22. X. Y. Liu, K. B. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191–201 (2017).
    [Crossref]
  23. K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
    [Crossref]
  24. Y. S. Guo and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5, 8144 (2015).
    [Crossref]
  25. Y. S. Guo and J. Zhou, “Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators,” Opt. Express 22, 27136–27143 (2014).
    [Crossref]
  26. K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
    [Crossref]
  27. Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
    [Crossref]
  28. Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
    [Crossref]
  29. J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
    [Crossref]
  30. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
    [Crossref]
  31. H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
    [Crossref]
  32. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
    [Crossref]
  33. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
    [Crossref]
  34. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
    [Crossref]
  35. C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
    [Crossref]
  36. Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
    [Crossref]
  37. W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
    [Crossref]

2018 (1)

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
[Crossref]

2017 (2)

X. Y. Liu, K. B. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191–201 (2017).
[Crossref]

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

2016 (3)

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

2015 (3)

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Y. S. Guo and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5, 8144 (2015).
[Crossref]

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

2014 (5)

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Y. S. Guo and J. Zhou, “Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators,” Opt. Express 22, 27136–27143 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

2013 (1)

2012 (1)

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

2011 (1)

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

2010 (5)

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

K. B. Alici and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4, 286–288 (2010).
[Crossref]

2009 (2)

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

2008 (1)

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

2007 (2)

2006 (2)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref]

2005 (1)

2004 (4)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2003 (1)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

2002 (1)

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Alici, K. B.

K. B. Alici and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4, 286–288 (2010).
[Crossref]

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Bai, S. A.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

Bi, K.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Brener, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Briggs, D. P.

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Campione, S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Cang, H.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Capasso, F.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Chong, K. E.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Ciraci, C.

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

Decker, M.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

Diehl, L.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

Dominguez, J.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Dong, G. Y.

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Du, K. K.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Edamura, T.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

Fan, J.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Fan, K. B.

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Feth, N.

Fiddy, M. A.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gladden, C.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Guo, Y. S.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Y. S. Guo and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5, 8144 (2015).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. S. Guo and J. Zhou, “Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators,” Opt. Express 22, 27136–27143 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Hesselink, L.

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Hou, X. J.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Hoyer, W.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Huang, C. P.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Im, K.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
[Crossref]

James, A.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

James, A. R.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Kan, H.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Kang, J. H.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

Kivshar, Y. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

Klein, M. W.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Koch, S. W.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

Kravchenko, I. I.

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Kuipers, L.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

Labno, A.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Lan, C. W.

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Lei, M.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Lezec, H. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, J. S.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Li, L. F.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Li, Q.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Liang, H.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Linden, S.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Liu, J. J.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Liu, M.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Liu, S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Liu, W. J.

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Liu, X. Y.

Liu, Y. M.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Lu, C. G.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Luk, T. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Lv, X. L.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Marques, R.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Martel, J.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

Matteo, J. A.

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Medina, F.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Mesa, F.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Moerland, R. J.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

Moloney, J. V.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

Neshev, D. N.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Ozbay, E.

K. B. Alici and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4, 286–288 (2010).
[Crossref]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Padilla, W. J.

Pan, M. Y.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Park, Q. H.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Pflugl, C.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Poutrina, E.

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

Qiu, M.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref]

Qu, Y. R.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

Raybould, T. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Scalora, M.

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

Shadrivov, I. V.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

Smith, D. R.

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Staude, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Subramania, G. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tian, J. Y.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Tsu, R.

Valentine, J.

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

van Oosten, D.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

Wang, L.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Wang, Q. J.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Wang, W.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Wang, Y. M.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Wegener, M.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wu, H. Y.

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Wu, S.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Yamanishi, M.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Yang, Y. M.

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Ye, H.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Yin, X. B.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Yin, X. G.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Yu, N. F.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Zeng, Y.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Zhang, X.

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Zhou, J.

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Y. S. Guo and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5, 8144 (2015).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

Y. S. Guo and J. Zhou, “Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators,” Opt. Express 22, 27136–27143 (2014).
[Crossref]

Zhou, L.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Zhu, Y. Y.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

ACS Photon. (1)

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Appl. Phys. Lett. (5)

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[Crossref]

Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108, 051906 (2016).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104, 123902 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104, 204103 (2014).
[Crossref]

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals,” Appl. Phys. Lett. 110, 101101 (2017).
[Crossref]

Nano Lett. (1)

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15, 5369–5374 (2015).
[Crossref]

Nat. Commun. (1)

Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Nat. Mater. (1)

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016).
[Crossref]

Nat. Photonics (4)

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12, 143–149 (2018).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

New J. Phys. (1)

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[Crossref]

Opt. Express (4)

Photon. Res. (1)

Phys. Rev. B (2)

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85, 201403 (2012).
[Crossref]

Phys. Rev. Lett. (8)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref]

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Phys. Status Solidi (1)

K. B. Alici and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4, 286–288 (2010).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Sci. Rep. (2)

K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5, 12489 (2015).
[Crossref]

Y. S. Guo and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5, 8144 (2015).
[Crossref]

Science (2)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic representation of a nonlinear enhanced electromagnetic transmission using a subwavelength metallic aperture with addition of a dielectric meta-atom. (a) Front view (yz plane) of a subwavelength aperture at the center of a copper plate. (b) Front and (c) sectional views (xz plane) of the subwavelength aperture with the inserted dielectric meta-atom. Electric field intensity distributions (xy plane) at the (d) nonresonant frequency (11.5 GHz) and (e) resonant frequency (11.73 GHz) of the meta-atom when the metallic aperture with the added meta-atom is placed within the waveguide and the electromagnetic waves are excited from one of the waveguide ports.
Fig. 2.
Fig. 2. Principles of the nonlinear enhanced electromagnetic transmission properties of a subwavelength metallic aperture with an added dielectric meta-atom. Transmission coefficients T1, T2, and T3 at incident powers of P1, P2, and P3, respectively.
Fig. 3.
Fig. 3. (a) Measured and (b) simulated transmission spectra of the single subwavelength metallic aperture and the same aperture with an inserted ceramic meta-atom at incident electromagnetic powers ranging from 0 to 20 dBm.
Fig. 4.
Fig. 4. Transmission spectra of the subwavelength aperture with the added ceramic meta-atom over the incident power range from 0 to 20 dBm. Enhanced nonlinear transmission is shown at (a) 11.71 GHz, (b) 11.74 GHz, and (c) 11.76 GHz, while linear transmission is shown at (d) 12 GHz. Black lines represent the measured results; red lines represent the simulated results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W=2πfV022ϵtanδ,
1T2R2=2πfk1ϵtanδ,
f=c2ϵk2,