Abstract

We propose to dynamically control the reflective color of a cholesteric liquid crystal (CLC) by electrically tuning the center wavelength (λc) of the bandgap. The CLC, sandwiched in a planar-aligned cell with indium–tin-oxide electrodes, possesses negative dielectric anisotropy and thermo-responsive spectral properties. The helix in the Grandjean planar state, which is subject to vertically applied voltage, should be undisturbed in that the long molecular axis is initially perpendicular to the direction of the electric field. Surprisingly, when the frequency of the applied voltage is higher than a critical value, λc of the CLC cell varies as a function of the voltage. The underlying mechanism is the voltage-induced temperature change through dielectric heating in the frequency regime of pseudo-dielectric relaxation, attributable to the significant equivalent resistance–capacitance circuit of the cell due to the use of electrode layers with finite conductance. The driving voltage enabling the tuning of λc in the entire visible spectrum is as low as 12  Vrms in a 5 μm thick cell at a frequency of 2 MHz. The proposed CLC cell, exhibiting a broad electrically tunable spectral range from the near-infrared to ultraviolet, holds great promise for developing tunable photonic devices such as multicolor reflectors, filters, and sensors.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Electrically switchable, photoaddressable cholesteric liquid crystal reflectors

Timothy J. White, Rebecca L. Bricker, Lalgudi V. Natarajan, Vincent P. Tondiglia, Lisa Green, Quan Li, and Timothy J. Bunning
Opt. Express 18(1) 173-178 (2010)

Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets

Po-Chang Wu, Longin N. Lisetski, and Wei Lee
Opt. Express 23(9) 11195-11204 (2015)

Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals

Eva Oton and Estelle Netter
Opt. Express 25(12) 13314-13323 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
    [Crossref]
  2. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
    [Crossref]
  3. Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
    [Crossref]
  4. C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
    [Crossref]
  5. G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H.-S. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.
  6. F. Zhang and D.-K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic a phase transition,” Liq. Cryst. 29, 1497–1501 (2002).
    [Crossref]
  7. Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
    [Crossref]
  8. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    [Crossref]
  9. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
    [Crossref]
  10. T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
    [Crossref]
  11. C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
    [Crossref]
  12. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
    [Crossref]
  13. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
    [Crossref]
  14. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
    [Crossref]
  15. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
    [Crossref]
  16. M. Schadt, “Dielectric heating and relaxations in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 66, 319–336 (1981).
    [Crossref]
  17. C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
    [Crossref]
  18. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
    [Crossref]
  19. P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
    [Crossref]
  20. S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
    [Crossref]
  21. P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
    [Crossref]
  22. Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
    [Crossref]
  23. P. Perkowski, “How to determine parameters of soft mode from dielectric spectroscopy performed using cells with ITO electrodes?” Opto-Electron. Rev. 19, 76–82 (2011).
    [Crossref]

2018 (1)

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

2015 (1)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

2012 (1)

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

2011 (2)

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

P. Perkowski, “How to determine parameters of soft mode from dielectric spectroscopy performed using cells with ITO electrodes?” Opto-Electron. Rev. 19, 76–82 (2011).
[Crossref]

2010 (3)

S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

2009 (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

2008 (3)

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

2007 (2)

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

2006 (3)

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[Crossref]

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

2005 (1)

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

2002 (1)

F. Zhang and D.-K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic a phase transition,” Liq. Cryst. 29, 1497–1501 (2002).
[Crossref]

1994 (1)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

1981 (1)

M. Schadt, “Dielectric heating and relaxations in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 66, 319–336 (1981).
[Crossref]

1969 (1)

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

Bailey, C. A.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

Bricker, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

Bunning, T. J.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Cao, H.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Chang, C.-K.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

Chen, C.-H.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, C.-N.

S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Chen, C.-W.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, Y.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Cheng, Z.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

Chilaya, G.

G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H.-S. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.

Chiu, S.-W.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

Doyle, C.

Duning, M. M.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

Durstock, M. F.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

Fuh, A. Y.-G.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Fujii, A.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Guo, R.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Ha, N. Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Hsiao, Y.-C.

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

Huang, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

Imrie, C. T.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Ishikawa, K.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Jeong, S. M.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Keating, P. N.

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Kuo, H.-L.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

Lada, D.

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Lavrentovich, O. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[Crossref]

Lee, W.

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

Li, K.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Li, Q.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Li, Y.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Lin, T.-H.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Matsuhisa, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

Natarajan, L. V.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Nishimura, S.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Ogrodnik, K.

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Ohtsuka, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Ozaki, M.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Ozaki, R.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Paterson, D. A.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Perkowski, P.

P. Perkowski, “How to determine parameters of soft mode from dielectric spectroscopy performed using cells with ITO electrodes?” Opto-Electron. Rev. 19, 76–82 (2011).
[Crossref]

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Piecek, W.

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Raszewski, Z.

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Rutkowska, J.

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

Schadt, M.

M. Schadt, “Dielectric heating and relaxations in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 66, 319–336 (1981).
[Crossref]

Shen, D.

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

Shiyanovskii, S. V.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[Crossref]

Store, J. M. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Sutherland, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Suzaki, G.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Takanishi, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Takao, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Takezoe, H.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Tang, K.-T.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

Tondiglia, V. P.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Tzeng, S.-Y. T.

S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Tzeng, Y.

S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Wang, F.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Wei, T.

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Wen, C.-H.

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

White, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Wu, S.-T.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

Wu, X.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Xiang, J.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Xiao, J.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Yang, D.-K.

F. Zhang and D.-K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic a phase transition,” Liq. Cryst. 29, 1497–1501 (2002).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

Yang, H.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Yang, Z.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Yang, Z.-H.

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

Yin, Y.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[Crossref]

Zhang, F.

F. Zhang and D.-K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic a phase transition,” Liq. Cryst. 29, 1497–1501 (2002).
[Crossref]

Zhang, L.

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Zhou, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Adv. Mater. (2)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[Crossref]

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Store, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27, 3014–3018 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6, 1701128 (2018).
[Crossref]

Appl. Phys. Lett. (5)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces,” Appl. Phys. Lett. 91, 231110 (2007).
[Crossref]

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012).
[Crossref]

T.-H. Lin, C.-H. Chen, Y. Chen, T. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

J. Appl. Phys. (4)

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107, 013105 (2010).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[Crossref]

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[Crossref]

J. Mater. Chem. (1)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

Liq. Cryst. (3)

S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

F. Zhang and D.-K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic a phase transition,” Liq. Cryst. 29, 1497–1501 (2002).
[Crossref]

Z. Cheng, K. Li, R. Guo, F. Wang, X. Wu, L. Zhang, J. Xiao, H. Cao, Z. Yang, and H. Yang, “Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures,” Liq. Cryst. 38, 233–239 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

M. Schadt, “Dielectric heating and relaxations in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 66, 319–336 (1981).
[Crossref]

Nat. Mater. (1)

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[Crossref]

Opt. Express (1)

Opto-Electron. Rev. (2)

P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, and Z. Raszewski, “Technical aspects of dielectric spectroscopy measurements of liquid crystals,” Opto-Electron. Rev. 16, 271–276 (2008).
[Crossref]

P. Perkowski, “How to determine parameters of soft mode from dielectric spectroscopy performed using cells with ITO electrodes?” Opto-Electron. Rev. 19, 76–82 (2011).
[Crossref]

Other (1)

G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H.-S. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Temperature-dependent λc of the experimental (open circles) and simulated (solid line) results. (b) Optical textures of the cell in the CLC phase observed in the reflection mode at four distinct temperatures. Inset in (a) is the transmission spectra at various temperatures.
Fig. 2.
Fig. 2. (a) Experimental and simulated complex dielectric spectra of the pure LC (MLC-6608) and the CLC (MLC-6608+45-wt.% S-811) cells at T=23°C. (b) Temperature dependence of deduced static dielectric constant ϵs and relaxation frequency fPR of the pseudo-dielectric relaxation of the LC cell in the CLC phase.
Fig. 3.
Fig. 3. (a) Temperature increase as a function of the frequency of an applied AC voltage of 15  Vrms. (b) Dynamic temperature increases of the CLC cell under the application of various voltages at a fixed frequency of 2 MHz. Note that the solid line in (a) is a simulated curve based on Eq. (6) and that the open symbols and solid lines in (b) represent experimental and curve-fitting results according to Eq. (5), respectively.
Fig. 4.
Fig. 4. Transmission spectra, texture images of the CLC, and photographs of the real cell driven by various voltages at 2 MHz.
Fig. 5.
Fig. 5. Frequency-dependent (a) center wavelength and (b) temperature elevation at various AC voltages. The open and solid symbols in (b) represent ΔT deduced from fitting of the experimental data using Eq. (2) and measured with an IR camera, respectively.
Fig. 6.
Fig. 6. (a) Complex dielectric spectra of the CLC cell with RITO=1.6  kΩ at T=23°C. (b) Frequency-dependent λc and ΔT of this cell under a 15Vrms applied voltage.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

fPR=1/(2πRITOCcell),
λc(T)=γT0T(1+βTT0)2,
ϵ=ϵ+ϵsϵ1+ω2τPR2
ϵ=(ϵsϵ)ωτPR1+ω2τPR2,
ΔT=[V2Aϵ0(ϵsϵ)d(C+ht)](τRω2t1+ω2τR2),
ΔT=[V2Aϵ0(ϵsϵ)dh](τRω21+ω2τR2).