Abstract

As a kind of two-dimensional transition metal dichalcogenide material, tungsten diselenide (WSe2) has attracted increasing attention, owing to its gapped electronic structure, relatively high carrier mobility, and valley pseudospin, all of which show its valuable nonlinear optical properties. There are few studies on the nonlinear optical properties of WSe2 and correlation with its electronic structure. In this paper, the effects of spatial self-phase modulation (SSPM) and distortion influence of WSe2 ethanol suspensions are systematically studied, namely, the nonlinear refractive index and third-order nonlinear optical effect. We obtained the WSe2 dispersions SSPM distortion formation mechanism, and through it, we calculated the nonlinear refractive index n2, nonlinear susceptibility χ(3), and their wavelength dependence under the excitation of 457 nm, 532 nm, and 671 nm lasers. Moreover, by use of its strong and broadband nonlinear optical response, all-optical switching of two different laser beams due to spatial cross-phase modulation has been realized experimentally. Our results are useful for future optical devices, such as all-optical switching and all-optical information conversion.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets

Xiaohong Li, Runkai Liu, Hanhan Xie, Yu Zhang, Bosai Lyu, Peng Wang, Jiahong Wang, Qi Fan, Ying Ma, Shaohua Tao, Si Xiao, Xuefeng Yu, Yongli Gao, and Jun He
Opt. Express 25(15) 18346-18354 (2017)

Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited]

Gaozhong Wang, Saifeng Zhang, Xiaoyan Zhang, Long Zhang, Ya Cheng, Daniel Fox, Hongzhou Zhang, Jonathan N. Coleman, Werner J. Blau, and Jun Wang
Photon. Res. 3(2) A51-A55 (2015)

Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region

Gaozhong Wang, Sean Higgins, Kangpeng Wang, Daniel Bennett, Nina Milosavljevic, John James Magan, Saifeng Zhang, Xiaoyan Zhang, Jun Wang, and Werner J. Blau
Appl. Opt. 57(22) E147-E153 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Rep. Prog. Phys. 74, 82501–82509 (2011).
    [Crossref]
  2. Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  3. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
    [Crossref]
  4. R. H. Friend and A. D. Yoffe, Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides (Springer, 1984), pp. 1–94.
  5. S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
    [Crossref]
  6. A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano 8, 7180–7185 (2014).
    [Crossref]
  7. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
    [Crossref]
  8. S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
    [Crossref]
  9. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
    [Crossref]
  10. F. Consadori and R. F. Frindt, “Crystal size effects on the exciton absorption spectrum of WSe2,” Phys. Rev. B 2, 4893–4896 (1970).
    [Crossref]
  11. A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
    [Crossref]
  12. R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
    [Crossref]
  13. H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
    [Crossref]
  14. J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
    [Crossref]
  15. V. Podzorov, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84, 3301–3303 (2004).
    [Crossref]
  16. P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
    [Crossref]
  17. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
    [Crossref]
  18. H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
    [Crossref]
  19. N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
    [Crossref]
  20. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
    [Crossref]
  21. L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
    [Crossref]
  22. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).
    [Crossref]
  23. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
    [Crossref]
  24. G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
    [Crossref]
  25. G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57, E147–E153 (2018).
    [Crossref]
  26. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  27. Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
    [Crossref]
  28. D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L. S. Ma, and J. L. Hall, “Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies,” Opt. Lett. 25, 308–310 (2000).
    [Crossref]
  29. S. Matsuoka, N. Miyanaga, S. Amano, and M. Nakatsuka, “Frequency modulation controlled by cross-phase modulation in optical fiber,” Opt. Lett. 22, 25–27 (1997).
    [Crossref]
  30. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
    [Crossref]
  31. Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
    [Crossref]
  32. P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. T. Zahn, “Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers,” Opt. Express 21, 4908–4916 (2013).
    [Crossref]
  33. G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
    [Crossref]
  34. B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
    [Crossref]
  35. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  36. J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
    [Crossref]
  37. Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
    [Crossref]
  38. Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
    [Crossref]
  39. X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
    [Crossref]
  40. J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
    [Crossref]
  41. Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
    [Crossref]

2018 (2)

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57, E147–E153 (2018).
[Crossref]

2017 (2)

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

2016 (2)

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

2015 (3)

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

2014 (3)

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano 8, 7180–7185 (2014).
[Crossref]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

2013 (10)

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
[Crossref]

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. T. Zahn, “Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers,” Opt. Express 21, 4908–4916 (2013).
[Crossref]

2012 (3)

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (1)

A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Rep. Prog. Phys. 74, 82501–82509 (2011).
[Crossref]

2010 (2)

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2008 (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

2006 (1)

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

2004 (1)

V. Podzorov, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84, 3301–3303 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2000 (1)

1997 (1)

1987 (2)

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[Crossref]

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
[Crossref]

1981 (1)

1980 (1)

H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
[Crossref]

1976 (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
[Crossref]

1970 (1)

F. Consadori and R. F. Frindt, “Crystal size effects on the exciton absorption spectrum of WSe2,” Phys. Rev. B 2, 4893–4896 (1970).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[Crossref]

Albrecht, M.

Allain, A.

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano 8, 7180–7185 (2014).
[Crossref]

Amano, S.

Anderson, I. M.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Anderson, M. D.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Antunez, P. D.

P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
[Crossref]

Arakelian, S. M.

Bai, X. D.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Bao, J.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Bao, Q.

Beal, A. R.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
[Crossref]

Bennett, D.

Berseth, P. A.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Blau, W. J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Borner, J.

Bottger, P.

Brutchey, R. L.

P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
[Crossref]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Cahill, D. G.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Ceballos, F.

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

Cha, J. J.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Chang, T. C.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Chang, W. H.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Chang, Y. H.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Chen, Y. F.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

Cheng, C.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Cheng, P.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Cheng, X.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Cheng, Y.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Chiritescu, C.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Chiu, M. H.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Chu, L.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Chuang, S.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Chueh, Y. L.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Coehoorn, R.

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
[Crossref]

Coghlan, D.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Coleman, J. N.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Cong, C.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Consadori, F.

F. Consadori and R. F. Frindt, “Crystal size effects on the exciton absorption spectrum of WSe2,” Phys. Rev. B 2, 4893–4896 (1970).
[Crossref]

Cui, Q.

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Cundiff, S. T.

de Groot, R. A.

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
[Crossref]

Diddams, S. A.

Ding, F.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Disalvo, F. J.

H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
[Crossref]

Dong, N.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Du, J.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Durbin, S. D.

Eda, G.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Fan, D.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Fan, Q.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Fang, H.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Fox, D.

Friend, R. H.

R. H. Friend and A. D. Yoffe, Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides (Springer, 1984), pp. 1–94.

Frindt, R. F.

F. Consadori and R. F. Frindt, “Crystal size effects on the exciton absorption spectrum of WSe2,” Phys. Rev. B 2, 4893–4896 (1970).
[Crossref]

Gao, Y.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

Ge, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Godbout, N.

Gordan, O.

Gray, H. B.

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

Guo, Z.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Haas, C.

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
[Crossref]

Hall, J. L.

Han, W.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

He, J.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

He, Q.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Heinz, T. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Heller, A.

H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
[Crossref]

Higgins, S.

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Hsu, C. L.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Huang, J. K.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Hughes, H. P.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
[Crossref]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

Iwasa, Y.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Javey, A.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Jiang, X.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Johanes, P.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Jones, D. J.

Juang, Z. Y.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Kalantarzadeh, K.

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kapadia, R.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kis, A.

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano 8, 7180–7185 (2014).
[Crossref]

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kloc, C.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. T. Zahn, “Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers,” Opt. Express 21, 4908–4916 (2013).
[Crossref]

Kockaert, P.

Kong, D.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Kumar, N.

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Lewerenz, H. J.

H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
[Crossref]

Lewis, N. S.

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

Li, H.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Li, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Li, L. J.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Li, X.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

Liang, W. Y.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
[Crossref]

Liebig, A.

Lin, Q.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Liu, D.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Liu, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Liu, N.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Liu, R.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Liu, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Lu, G.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Lu, L.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Lu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Lv, B.

Lyu, B.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Ma, L. S.

Ma, Y.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Magan, J. J.

Massar, S.

Matsuoka, S.

Mavrokefalos, A.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Mckone, J. R.

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

Meng, S.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Mera, Y.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Miao, L.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Milosavljevic, N.

Miyanaga, N.

Nakatsuka, M.

Neto, A. H. C.

A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Rep. Prog. Phys. 74, 82501–82509 (2011).
[Crossref]

Nguyen, N. T.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Novoselov, K.

A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Rep. Prog. Phys. 74, 82501–82509 (2011).
[Crossref]

Pieterick, A. P.

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

Ping, L. K.

Podzorov, V.

V. Podzorov, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84, 3301–3303 (2004).
[Crossref]

Pu, J.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Schmidt, R.

Shen, Y. R.

Shi, B.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Shi, L.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Shigekawa, H.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Sun, F.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Takenobu, T.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Takeuchi, O.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Tan, P. H.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Tang, P.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Tang, Y.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Tao, S.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Taubman, M. S.

Terada, Y.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Tian, Y. C.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Toh, M.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Tonndorf, P.

Umran, F. A.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Virally, S.

Wang, C. Y.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

Wang, G.

Wang, H.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Wang, J.

G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57, E147–E153 (2018).
[Crossref]

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Wang, K.

Wang, L.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Wang, P.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Wang, Q.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, S. H.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

Wang, W. L.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Wang, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Wang, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Webber, D. H.

P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
[Crossref]

Wei, J. K.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Wen, S.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Wu, L.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Wu, Q.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Wu, Y.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Wu, Y. L.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Xiang, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Xiao, S.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

Xie, H.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Xie, Z.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Xu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Yan, K.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Yen, W. C.

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

Yin, Z.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Yoffe, A. D.

R. H. Friend and A. D. Yoffe, Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides (Springer, 1984), pp. 1–94.

Yokota, M.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Yoshida, S.

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Yu, I. A.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

Yu, T.

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Yu, X.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, and J. He, “Broadband spatial self-phase modulation of black phosphorous,” Opt. Lett. 41, 1704–1707 (2016).
[Crossref]

Zahn, D. R. T.

Zhang, F.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Zhang, H.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

Zhang, J.

Zhang, L.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions,” Photon. Res. 3, A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Zhao, C.

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Zhao, H.

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

Zhao, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Zhao, W.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Zheng, G.

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Zhou, X.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Zhu, L. L.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Zhu, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Zschack, P.

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

Zuo, X.

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

ACS Nano (5)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, and A. F. Ismach, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref]

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano 8, 7180–7185 (2014).
[Crossref]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8, 923–930 (2013).
[Crossref]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref]

Adv. Opt. Mater. (1)

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, and H. Shigekawa, “Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy,” Appl. Phys. Express 6, 016601 (2013).
[Crossref]

Appl. Phys. Lett. (5)

S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, and A. Javey, “Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes,” Appl. Phys. Lett. 102, 242101 (2013).
[Crossref]

V. Podzorov, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84, 3301–3303 (2004).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, and S. Wen, “Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions,” Appl. Phys. Lett. 107, 151101 (2015).
[Crossref]

Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, and J. Zhao, “Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene,” Appl. Phys. Lett. 108, 241110 (2016).
[Crossref]

Chem. Mater. (2)

N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, and I. M. Anderson, “Synthesis and properties of turbostratically disordered, ultrathin WSe2 films,” Chem. Mater. 22, 2750–2756 (2010).
[Crossref]

P. D. Antunez, D. H. Webber, and R. L. Brutchey, “Solution-phase synthesis of highly conductive tungsten diselenide nanosheets,” Chem. Mater. 25, 2385–2387 (2013).
[Crossref]

J. Am. Chem. Soc. (2)

H. J. Lewerenz, A. Heller, and F. J. Disalvo, “Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes,” J. Am. Chem. Soc. 102, 1877–1880 (1980).
[Crossref]

J. R. Mckone, A. P. Pieterick, H. B. Gray, and N. S. Lewis, “Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes,” J. Am. Chem. Soc. 135, 223–231 (2012).
[Crossref]

J. Phys. C (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449–2457 (1976).
[Crossref]

Nano Lett. (1)

H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett. 13, 3426–3433 (2013).
[Crossref]

Nanoscale (1)

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9, 3547–3554 (2017).
[Crossref]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Express (1)

Opt. Express. (1)

X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, and J. He, “Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets,” Opt. Express. 25, 18346–18354 (2017).
[Crossref]

Opt. Lett. (5)

Photon. Res. (1)

Phys. Rev. B (2)

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B 35, 6203–6206 (1987).
[Crossref]

F. Consadori and R. F. Frindt, “Crystal size effects on the exciton absorption spectrum of WSe2,” Phys. Rev. B 2, 4893–4896 (1970).
[Crossref]

Phys. Rev. Lett. (2)

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[Crossref]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. 112, 11800–11805 (2015).
[Crossref]

Rep. Prog. Phys. (1)

A. H. C. Neto and K. Novoselov, “New directions in science and technology: two-dimensional crystals,” Rep. Prog. Phys. 74, 82501–82509 (2011).
[Crossref]

Science (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[Crossref]

Small (1)

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small 9, 1974–1981 (2013).
[Crossref]

Other (1)

R. H. Friend and A. D. Yoffe, Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides (Springer, 1984), pp. 1–94.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Characterization of WSe2 nanoparticles after stable storing for two weeks. (a) TEM image, (b) HRTEM image, (c) AFM image, (d) transmittance spectrum, (e) Raman spectrum, and (f) XRD pattern.
Fig. 2.
Fig. 2. Diagrammatic sketch of the measuring experimental setup.
Fig. 3.
Fig. 3. (a)–(c) Diffraction rings received by a CCD of SSPM transformation; (d) schematic of the distortion for WSe2 nanoparticle dispersions.
Fig. 4.
Fig. 4. (a) Variation of the half-cone angle (θH) with incident intensity; (b) variation of the distortion angle (θD) with incident intensity; (c) change in the nonlinear refractive index of WSe2 after distortion.
Fig. 5.
Fig. 5. Variation of diffraction ring numbers with incident intensity at λ=532  nm, λ=671  nm, and λ=457  nm, respectively.
Fig. 6.
Fig. 6. (a) Transformation of SSPM. (1)–(3): continuous wave; (4)–(6): ultrafast wave. (b) Variation of diffraction ring numbers with continuous wave and ultrafast wave.
Fig. 7.
Fig. 7. Schematic of the experimental configuration for all-optical switching.
Fig. 8.
Fig. 8. (a) Results obtained by using a relatively strong λ=532  nm laser beam to control the other laser beam with relatively weak power at λ=671  nm; (b), (c) images obtained from white screen.

Tables (1)

Tables Icon

Table 1. n2 and χmonolayer(3) for a Variety of 2D Materials

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

θH=RHD.
θH=RHD.
θD=θHθH=RDD.
θD=θHθH=(n2n2)IC=Δn2IC.
Δn2/n2=θD/θH.
n=n0+n2I,
Δψ=2πn0λ0Leffn2I(r,z)dz,
Leff=L1L2(1+z2z02)1dz=z0arctan(zz0)|L2L1,
n2=λ2n0Leff·NI.
χtotal(3)=cλn02.4×104π2Leff·dNdI.
χtotal(3)=χmonolayer(3)Neff2,