Abstract

We experimentally demonstrate for the first time, to the best of our knowledge, an all-fiber passively mode-locked laser operation based on the nonlinear multimode interference of step-index multimode fiber. Such a structure couples the light in and out of the multimode fiber via single-mode fibers, and its physical mechanisms for saturable absorption have been analyzed theoretically based on the third-order nonlinear Kerr effect of multimode fiber. Using the nonlinear multimode interference structure with 48.8 mm length step-index multimode fiber, the modulation depth has been measured to be 5%. The passively mode-locked laser output pulses have a central wavelength of 1596.66 nm, bandwidth of 2.18 nm, pulsewidth of 625  fs, and fundamental repetition rate of 8.726 MHz. Furthermore, the influence of total cavity dispersion on the optical spectrum, pulse width, and output power is investigated systematically by adding different lengths of single-mode fiber and dispersion compensation fiber in the laser cavity.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable all-fiber dissipative-soliton laser with a multimode interference filter

Lei Zhang, Jinmeng Hu, Jianhua Wang, and Yan Feng
Opt. Lett. 37(18) 3828-3830 (2012)

Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber

Huanhuan Li, Zhaokun Wang, Can Li, Junjie Zhang, and Shiqing Xu
Opt. Express 25(22) 26546-26553 (2017)

Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248  MHz repetition rate

Biao Sun, Jiaqi Luo, Boon Ping Ng, and Xia Yu
Opt. Lett. 41(17) 4052-4055 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [Crossref]
  2. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004).
    [Crossref]
  3. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16, 15425–15430 (2008).
    [Crossref]
  4. F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  5. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  6. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  7. X. He, Z. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
    [Crossref]
  8. T. Chen, C. Liao, D. Wang, and Y. Wang, “Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber,” Appl. Opt. 53, 2828–2832 (2014).
    [Crossref]
  9. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  10. H. Liu, A. Luo, F. Wang, R. Tang, M. Liu, Z. Luo, W. Xu, C. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
    [Crossref]
  11. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
    [Crossref]
  12. J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
    [Crossref]
  13. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  14. Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24, 25933–25942 (2016).
    [Crossref]
  15. S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, and H. Zhang, “Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance,” Photon. Res. 5, 662–668 (2017).
    [Crossref]
  16. S. Y. Ryu, K. S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express 20, 12966–12974 (2012).
    [Crossref]
  17. A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21, 4665–4670 (2013).
    [Crossref]
  18. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [Crossref]
  19. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23, 4369–4376 (2015).
    [Crossref]
  20. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).
    [Crossref]
  21. C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
    [Crossref]
  22. J. Proctor and J. N. Kutz, “Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays,” Opt. Express 13, 8933–8950 (2005).
    [Crossref]
  23. Q. Chao, D. D. Hudson, J. N. Kutz, and S. T. Cundiff, “Waveguide array fiber laser,” IEEE Photon. J. 4, 1438–1442 (2012).
    [Crossref]
  24. E. Nazemosadat and A. Mafi, “Saturable absorption in multicore fiber couplers,” J. Opt. Soc. Am. B 30, 2787–2790 (2013).
    [Crossref]
  25. H. G. Winful and D. T. Walton, “Passive mode locking through nonlinear coupling in a dual-core fiber laser,” Opt. Lett. 17, 1688–1690 (1992).
    [Crossref]
  26. Y. Oh, S. L. Doty, J. W. Haus, and R. L. Fork, “Robust operation of a dual-core fiber ring laser,” J. Opt. Soc. Am. B 12, 2502–2507 (1995).
    [Crossref]
  27. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. C. Bedoya, T. Taunay, and B. J. Eggleton, “Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption,” Opt. Lett. 37, 2469–2471 (2012).
    [Crossref]
  28. A. S. Karar, T. Smy, and A. L. Steele, “Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating,” IEEE J. Quantum Electron. 44, 254–261 (2008).
    [Crossref]
  29. E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Am. B 30, 1357–1367 (2013).
    [Crossref]
  30. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [Crossref]
  31. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18, 591–597 (2010).
    [Crossref]
  32. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
    [Crossref]
  33. X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
    [Crossref]
  34. A. B. Socorro, I. D. Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Mode transition in complex refractive index coated single-mode-multimode–single-mode structure,” Opt. Express 21, 12668–12682 (2013).
    [Crossref]
  35. N. Bhatia and J. John, “Multimode interference devices with single-mode-multimode–multimode fiber structure,” Appl. Opt. 53, 5179–5186 (2014).
    [Crossref]
  36. N. Bhatia, K. C. Rustagi, and J. John, “Single LP0,n mode excitation in multimode fibers,” Opt. Express 22, 16847–16862 (2014).
    [Crossref]
  37. N. Bhatia and J. John, “Single-mode-multimode-multimode device: sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Am. B 33, 211–219 (2016).
    [Crossref]
  38. L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
    [Crossref]
  39. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
    [Crossref]
  40. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
    [Crossref]
  41. P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers,” J. Lightwave Technol. 30, 2289–2298 (2012).
    [Crossref]
  42. H. Li, Z. Wang, C. Li, J. Zhang, and S. Xu, “Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,” Opt. Express 25, 26546–26553 (2017).
    [Crossref]
  43. Z. Wang, D. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of step index-graded index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35, 5280–5285 (2017).
    [Crossref]
  44. F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber-graded index fiber-single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2018).
    [Crossref]
  45. Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
    [Crossref]
  46. U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
    [Crossref]
  47. X. Zhu, Multimode Interference in Optical Fibers and its Applications of Fiber Lasers and Amplifiers (University of Arizona, 2008).
  48. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode–single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [Crossref]
  49. S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, and N. Peyghambarian, “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express 23, 17255–17262 (2015).
    [Crossref]
  50. H. Li, M. Brio, L. Li, A. Schülzgen, N. Peyghambarian, and J. V. Moloney, “Multimode interference in circular step-index fibers studied with the mode expansion approach,” J. Opt. Soc. Am. B 24, 2707–2720 (2007).
    [Crossref]
  51. T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20, 20043–20058 (2012).
    [Crossref]
  52. G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  53. H. Afkhamiardakani, M. Tehrani, and J.-C. Diels, “Extension of the stable operation of an all polarization maintaining mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh2A.141.
  54. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
    [Crossref]
  55. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
    [Crossref]

2018 (3)

2017 (4)

2016 (3)

2015 (4)

2014 (6)

2013 (5)

2012 (7)

2011 (1)

2010 (3)

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2008 (5)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

1995 (1)

1992 (4)

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[Crossref]

H. G. Winful and D. T. Walton, “Passive mode locking through nonlinear coupling in a dual-core fiber laser,” Opt. Lett. 17, 1688–1690 (1992).
[Crossref]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

1990 (1)

Abramski, K. M.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Afkhamiardakani, H.

H. Afkhamiardakani, M. Tehrani, and J.-C. Diels, “Extension of the stable operation of an all polarization maintaining mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh2A.141.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

Aguergaray, C.

Andonovic, I.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Antonio-Lopez, J. E.

Arregui, F. J.

Asom, M. T.

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bedoya, A. C.

Bennion, I.

Bhatia, N.

Blow, K. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Boyd, G. D.

Brio, M.

Broderick, N. G. R.

Büttner, T. F. S.

Cao, G.

Cao, S.

Castillo-Guzman, A.

Chao, Q.

Q. Chao, D. D. Hudson, J. N. Kutz, and S. T. Cundiff, “Waveguide array fiber laser,” IEEE Photon. J. 4, 1438–1442 (2012).
[Crossref]

Chen, H.

Chen, J. S. Y.

Chen, S.

Chen, T.

Chen, Y.

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Cheng, C. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chi, Y. C.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chiu, T. H.

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Corres, J. M.

Cundiff, S. T.

Q. Chao, D. D. Hudson, J. N. Kutz, and S. T. Cundiff, “Waveguide array fiber laser,” IEEE Photon. J. 4, 1438–1442 (2012).
[Crossref]

Diels, J.-C.

H. Afkhamiardakani, M. Tehrani, and J.-C. Diels, “Extension of the stable operation of an all polarization maintaining mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh2A.141.

Doty, S. L.

Eggleton, B. J.

Erkintalo, M.

Estudillo-Ayala, J.

Fang, Z.

Farrell, G.

Ferguson, J. F.

Fermann, M. E.

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Fork, R. L.

Fu, S.

Fuse, K.

Ge, Y.

Grodecki, K.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Gu, X.

Guo, C.

Haberl, F.

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Haus, J. W.

He, J. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, X.

Hennrich, F.

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Hochreiter, H.

Hofer, M.

Hofmann, P.

Hu, J.

Hudson, D. D.

Inoue, Y.

Jablonski, M.

Jhon, Y. M.

Jiang, X.

Jin, S.

John, J.

Jollivet, C.

Jung, M.

Karar, A. S.

A. S. Karar, T. Smy, and A. L. Steele, “Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating,” IEEE J. Quantum Electron. 44, 254–261 (2008).
[Crossref]

Keller, U.

Kim, J.

Kim, K. S.

Kim, S.

Koo, J.

Kruglov, V.

Kutz, J. N.

Lee, C. K.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lee, J. H.

Lee, K.

Lee, S.

Li, C.

Li, H.

Li, I. L.

Li, J.

Li, L.

F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber-graded index fiber-single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2018).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
[Crossref]

Z. Wang, D. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of step index-graded index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35, 5280–5285 (2017).
[Crossref]

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24, 25933–25942 (2016).
[Crossref]

T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20, 20043–20058 (2012).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[Crossref]

H. Li, M. Brio, L. Li, A. Schülzgen, N. Peyghambarian, and J. V. Moloney, “Multimode interference in circular step-index fibers studied with the mode expansion approach,” J. Opt. Soc. Am. B 24, 2707–2720 (2007).
[Crossref]

Li, M. J.

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Li, X.

Li, Z.

Liao, C.

LiKamWa, P.

Lin, G. R.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, S. F.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Liu, A.

Liu, H.

Liu, M.

Liu, S.

Liu, Z.

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

X. He, Z. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Luo, A.

Luo, Z.

Mafi, A.

Mägi, E. C.

Martinez, A.

Maruyama, S.

Matias, I. R.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

May-Arrioja, D. A.

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Miller, D. A. B.

Milne, W. I.

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Mohammed, W. S.

Moloney, J. V.

Murakami, Y.

Nazemosadat, E.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Nolan, D. A.

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Norwood, R. A.

Oh, Y.

Ortaç, B.

Park, J.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Peyghambarian, N.

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Proctor, J.

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Rozhin, A.

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Ruan, S.

Rustagi, K. C.

Ryu, S. Y.

Salvin, C. J.

Scardaci, V.

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Schulzgen, A.

Schülzgen, A.

Selvas-Aguilar, R.

Set, S. Y.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Sheng, Q.

Shi, G.

Shi, W.

Shum, P. P.

Smith, N. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Smith, P. W. E.

Smy, T.

A. S. Karar, T. Smy, and A. L. Steele, “Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating,” IEEE J. Quantum Electron. 44, 254–261 (2008).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Socorro, A. B.

Song, Y.

Song, Y.-W.

Sotor, J.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Steele, A. L.

A. S. Karar, T. Smy, and A. L. Steele, “Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating,” IEEE J. Quantum Electron. 44, 254–261 (2008).
[Crossref]

Sun, J.

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Suzuki, S.

Tang, D.

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, R.

Tang, Y.

Taunay, T.

Tegin, U.

Tehrani, M.

H. Afkhamiardakani, M. Tehrani, and J.-C. Diels, “Extension of the stable operation of an all polarization maintaining mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh2A.141.

Temyanko, V. L.

Tiess, T.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tseng, W. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Villar, I. D.

Walton, D. T.

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, D.

Wang, D. N.

Wang, F.

H. Liu, A. Luo, F. Wang, R. Tang, M. Liu, Z. Luo, W. Xu, C. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, H.

Wang, J.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, Q.

Wang, Q. J.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, Y.

T. Chen, C. Liao, D. Wang, and Y. Wang, “Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber,” Appl. Opt. 53, 2828–2832 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

Wei, H.

Wen, Q.

White, I.

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Winful, H. G.

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Wu, C. I.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Xu, B.

Xu, S.

Xu, W.

Yaguchi, H.

Yamashita, S.

Yan, P.

Yan, W.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yan, Z.

Yang, F.

Yang, H.

Yao, J.

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Yu, X.

Yue, R.

Zhang, H.

Zhang, J.

Zhang, Q.

Zhang, Y.

Zhao, C.

Zhao, L.

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zhou, K.

Zhu, X.

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

ACS Photon. (1)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

A. S. Karar, T. Smy, and A. L. Steele, “Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating,” IEEE J. Quantum Electron. 44, 254–261 (2008).
[Crossref]

IEEE Photon. J. (1)

Q. Chao, D. D. Hudson, J. N. Kutz, and S. T. Cundiff, “Waveguide array fiber laser,” IEEE Photon. J. 4, 1438–1442 (2012).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (5)

Nat. Nanotechnol. (1)

F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Nat. Photonics (1)

L. G. Wright, Z. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10, 771–776 (2016).
[Crossref]

Opt. Express (16)

N. Bhatia, K. C. Rustagi, and J. John, “Single LP0,n mode excitation in multimode fibers,” Opt. Express 22, 16847–16862 (2014).
[Crossref]

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18, 591–597 (2010).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
[Crossref]

A. B. Socorro, I. D. Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Mode transition in complex refractive index coated single-mode-multimode–single-mode structure,” Opt. Express 21, 12668–12682 (2013).
[Crossref]

C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
[Crossref]

J. Proctor and J. N. Kutz, “Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays,” Opt. Express 13, 8933–8950 (2005).
[Crossref]

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16, 15425–15430 (2008).
[Crossref]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23, 4369–4376 (2015).
[Crossref]

S. Y. Ryu, K. S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express 20, 12966–12974 (2012).
[Crossref]

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21, 4665–4670 (2013).
[Crossref]

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24, 25933–25942 (2016).
[Crossref]

T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20, 20043–20058 (2012).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, and N. Peyghambarian, “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express 23, 17255–17262 (2015).
[Crossref]

F. Yang, D. N. Wang, Z. Wang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Saturable absorber based on a single mode fiber-graded index fiber-single mode fiber structure with inner micro-cavity,” Opt. Express 26, 927–934 (2018).
[Crossref]

H. Li, Z. Wang, C. Li, J. Zhang, and S. Xu, “Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,” Opt. Express 25, 26546–26553 (2017).
[Crossref]

Opt. Lett. (12)

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
[Crossref]

U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
[Crossref]

H. Liu, A. Luo, F. Wang, R. Tang, M. Liu, Z. Luo, W. Xu, C. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).
[Crossref]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[Crossref]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004).
[Crossref]

X. He, Z. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
[Crossref]

H. G. Winful and D. T. Walton, “Passive mode locking through nonlinear coupling in a dual-core fiber laser,” Opt. Lett. 17, 1688–1690 (1992).
[Crossref]

T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. C. Bedoya, T. Taunay, and B. J. Eggleton, “Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption,” Opt. Lett. 37, 2469–2471 (2012).
[Crossref]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Science (1)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref]

Other (3)

X. Zhu, Multimode Interference in Optical Fibers and its Applications of Fiber Lasers and Amplifiers (University of Arizona, 2008).

G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

H. Afkhamiardakani, M. Tehrani, and J.-C. Diels, “Extension of the stable operation of an all polarization maintaining mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh2A.141.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of MMI structure.
Fig. 2.
Fig. 2. Experimental setup of the nonlinear MMI mode-locked fiber laser. WDM, wavelength division multiplexer; PC, polarization controller; DCF, dispersion compensation fiber; OSA, optical spectrum analyzer.
Fig. 3.
Fig. 3. Optical spectra of mode-locked fiber lasers with different lengths of MMF in MMI structures.
Fig. 4.
Fig. 4. (a) Experimental setup for the absorption measurement of the MMI structure. ATT, attenuator. (b) Measured nonlinear absorption of MMI structure with L=48.8  mm.
Fig. 5.
Fig. 5. (a) Output optical spectra of fiber laser for CW without MMI and mode-locked with MMI for underlying values. (b) Mode-locked pulse shape (experimental data) with sech2 fit.
Fig. 6.
Fig. 6. (a) Typical laser output pulse train. (b) Radio frequency spectrum measured around the fundamental repetition rate. Inset is the radio frequency spectrum with high-order harmonic of the repetition rate.
Fig. 7.
Fig. 7. Optical spectra of mode-locked fiber lasers for adding different lengths of SMF or DCF.

Tables (1)

Tables Icon

Table 1. Optical Parameters of Mode-Locked Fiber Laser for Adding Different Lengths of SMF and DCF

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ESMF(r,ϕ,z=0)=n=1NCnen(r,ϕ,z=0),
EMMF(r,ϕ,z)=n=1NCnen(r,ϕ,0)eiβnz=eiβ1zn=1NCnen(r,ϕ,0)ei(βnβ1)z,
β1LS+q2π=βnLS,
Anz=in2ω0c(fnn|An|2+2mnfmn|Am|2)An,
fmn=|em(x,y)|2|en(x,y)|2dxdy|em(x,y)|2dxdy|en(x,y)|2dxdy,
Anz=iγnPnAn,
An(z)=An(0)eiγnPnz,
β1LS+q2π+γ1P1LS=βnLS+γnPnLS,
LS=β1βn(β1βn)+(γ1P1γnPn)LS.
Δλ=2ln(1+2)λ22πcτ4mπ|Lβ2|[τ2ln(1+2)]21,

Metrics