Abstract

Here, we used the micro P-scan method to investigate the saturated absorption (SA) of different layered Bi2Se3 continuous films. Through resonance excitation, first, we studied the influence of the second surface state (SS) on SA. The second SS resonance excitation (2.07  eV) resulted in a free carrier cross section that was 4 orders of magnitude larger than usual. At the same time, we found that the fast relaxation process of the massless Dirac electrons is much shorter than that of electrons in bulk states. Moreover, the second SS excitation resonance reduced the saturation intensity. Second, we studied the effect of the thickness on the SA properties of materials. The results showed that the saturation intensity was positively correlated to the thickness, the same as the modulation depth, and the thicker the Bi2Se3 film was, the less the second SS would influence it. This work demonstrated that by using Bi2Se3 as a saturable absorber through changing the thickness or excitation wavelength, a controllable SA could be achieved.

© 2018 Chinese Laser Press

Full Article  |  PDF Article

Corrections

26 September 2018: A typographical correction was made to the title.


OSA Recommended Articles
Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber

Yi-Jian Sun, Chao-Kuei Lee, Jin-Long Xu, Zhao-Jie Zhu, Ye-Qing Wang, Shu-Fang Gao, Hou-Ping Xia, Zhen-Yu You, and Chao-Yang Tu
Photon. Res. 3(3) A97-A101 (2015)

Broadband optical and microwave nonlinear response in topological insulator

Shuqing Chen, Chujun Zhao, Ying Li, Huihui Huang, Shunbin Lu, Han Zhang, and Shuangchun Wen
Opt. Mater. Express 4(4) 587-596 (2014)

Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions

Jun Zhang, Hao Ouyang, Xin Zheng, Jie You, Runze Chen, Tong Zhou, Yizhen Sui, Yu Liu, Xiang’ai Cheng, and Tian Jiang
Opt. Lett. 43(2) 243-246 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
    [Crossref]
  2. L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
    [Crossref]
  3. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4, 587–596 (2014).
    [Crossref]
  4. J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
    [Crossref]
  5. J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
    [Crossref]
  6. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
    [Crossref]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  8. Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
    [Crossref]
  9. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
    [Crossref]
  10. K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
    [Crossref]
  11. Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
    [Crossref]
  12. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
    [Crossref]
  13. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [Crossref]
  14. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  15. Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
    [Crossref]
  16. M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
    [Crossref]
  17. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
    [Crossref]
  18. X. Fu, J. Qian, X. Qiao, P. Tan, and Z. Peng, “Nonlinear saturable absorption of vertically stood WS2 nanoplates,” Opt. Lett. 39, 6450–6453 (2014).
    [Crossref]
  19. J. Zhang, T. Jiang, X. Zheng, C. Shen, and X. Cheng, “Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets,” Opt. Lett. 42, 3371–3374 (2017).
    [Crossref]
  20. J. Zhang, H. Ouyang, X. Zheng, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, “Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions,” Opt. Lett. 43, 243–246 (2018).
    [Crossref]
  21. Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
    [Crossref]
  22. N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
  23. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
    [Crossref]
  24. B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
    [Crossref]
  25. J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
    [Crossref]
  26. S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
    [Crossref]
  27. W. T. Lee and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [Crossref]
  28. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
    [Crossref]

2018 (5)

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

J. Zhang, H. Ouyang, X. Zheng, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, “Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions,” Opt. Lett. 43, 243–246 (2018).
[Crossref]

2017 (2)

J. Zhang, T. Jiang, X. Zheng, C. Shen, and X. Cheng, “Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets,” Opt. Lett. 42, 3371–3374 (2017).
[Crossref]

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

2016 (2)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

2015 (3)

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
[Crossref]

2014 (4)

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4, 587–596 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

X. Fu, J. Qian, X. Qiao, P. Tan, and Z. Peng, “Nonlinear saturable absorption of vertically stood WS2 nanoplates,” Opt. Lett. 39, 6450–6453 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

2013 (2)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

2011 (1)

X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

2010 (1)

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

2009 (2)

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2007 (2)

L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

2006 (1)

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

2001 (1)

S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
[Crossref]

1996 (1)

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
[Crossref]

1993 (1)

W. T. Lee and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[Crossref]

Alam, M. Z.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Analytis, J. G.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Boggess, T. F.

W. T. Lee and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[Crossref]

Boyd, R. W.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Chang, C.-Z.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Chen, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Chen, R.

Chen, S.

Chen, X.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Chen, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Chen, Z.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Cheng, X.

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Dai, X.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

De Leon, I.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Devereaux, T. P.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Ding, J.

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Dong, N.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Duesberg, G. S.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fan, Y.-X.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Fang, Z.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Feng, Y.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fisher, I. R.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fu, L.

L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
[Crossref]

Fu, X.

Gao, Y. L.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Gatensby, R.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Ge, Y.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Gilliot, P.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
[Crossref]

Gu, B.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Guo, B.

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

He, J.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

He, K.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Hirlimann, C.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
[Crossref]

Hou, J.

Huang, H.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4, 587–596 (2014).
[Crossref]

Ji, J.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Ji, W.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Jia, J.-F.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Jiang, T.

Jiang, X.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Kane, C. L.

L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
[Crossref]

Kemper, A. F.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Kirchmann, P. S.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Kirkpatrick, S. M.

S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
[Crossref]

Lami, J.-F.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
[Crossref]

Lee, J. J.

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Lee, W. T.

W. T. Lee and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[Crossref]

Leuenberger, D.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

Li, J. B.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Li, L.

Li, W.

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Li, Y.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4, 587–596 (2014).
[Crossref]

Liang, W.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Liang, Z.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Liu, C.-X.

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Liu, S.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Liu, Y.

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Long, M. Q.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Lu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Lu, S.

Ma, X.-C.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

McEvoy, N.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Mele, E. J.

L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
[Crossref]

Moore, R. G.

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Naik, R. R.

S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Niu, Q.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ouyang, H.

Peng, Z.

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Qi, X.-L.

X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Qian, J.

Qiao, X.

Schmitt, F. T.

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Schulz, S. A.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

Shan, W.-Y.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Shen, C.

Shen, S.-Q.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shen, Z.-X.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Sobota, J. A.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Song, C.-L.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Song, Y.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Stone, M. O.

S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
[Crossref]

Sui, Y.

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

Tan, P.

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Upham, J.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

Wang, H.-T.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Wang, J.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Wang, K.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, L.-L.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y. W.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Wen, S.

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Xiao, J.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Xiao, S.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Xue, Q.-K.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, S.-L.

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

Yim, C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Yin, K.

You, J.

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Yu, X. F.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Zeng, B. W.

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Zhang, B.

Zhang, F.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Zhang, H.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4, 587–596 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Zhang, J.

Zhang, L.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, S.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, S.-C.

X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Zhang, X.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Zhao, C.

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zheng, J.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

Zheng, X.

Zhou, T.

Zhou, X.

ACS Nano (2)

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

ACS Photon. (1)

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion,” Adv. Opt. Mater. 6, 1701287 (2018).
[Crossref]

J. Appl. Phys. (1)

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 195, 249–257 (2014).
[Crossref]

J. Phys. Chem. B (1)

S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, “Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein,” J. Phys. Chem. B 105, 2867–2873 (2001).
[Crossref]

Laser Photon. Rev. (2)

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, “Giant two-photon absorption in monolayer MoS2,” Laser Photon. Rev. 9, 427–434 (2015).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Nanoscale (1)

Y. W. Wang, S. Liu, B. W. Zeng, H. Huang, J. Xiao, J. B. Li, M. Q. Long, S. Xiao, X. F. Yu, Y. L. Gao, and J. He, “Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots,” Nanoscale 9, 4683–4690 (2017).
[Crossref]

Nat. Photonics (2)

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12, 79–83 (2018).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

Nat. Phys. (2)

Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. A (1)

B. Gu, Y.-X. Fan, J. Wang, J. Chen, J. Ding, H.-T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73, 065803 (2006).
[Crossref]

Phys. Rev. Lett. (3)

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77, 1632–1635 (1996).
[Crossref]

J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z.-X. Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett. 111, 136802 (2013).
[Crossref]

L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).
[Crossref]

Prog. Quantum Electron. (1)

W. T. Lee and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[Crossref]

Rev. Mod. Phys. (1)

X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

Science (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the open-aperture micro P-scan system. A 1/2 wavelength slide and a Glan prism are used to modulate the intensity of the laser. The chopper modulates the laser from 1 kHz to 500 Hz. An IDS camera and a Mitutoyo near-infrared objective lens ( 20 × , NA = 0.40 ) are used to build up the video microscope system (VMS). Two lock-in amplifiers are used to measure the power of the laser.
Fig. 2.
Fig. 2. Characterization of the continuous layered Bi 2 Se 3 films. (a) Streaks of Bi 2 Se 3 on Al 2 O 3 substrate. The lattice constant values of the epitaxy Bi 2 Se 3 film is 4.194 Å. (b) AFM profile of layered Bi 2 Se 3 film. (c) Raman spectra of these five different quintuple layer (QL) films. (d) LAS of different QL films. The peak absorption wavelengths of different QLs are 506, 572, 616, 626, and 650 nm.
Fig. 3.
Fig. 3. Transmission spectra induced by the 600, 700, and 800 nm lasers. (a), (c), (e) Summary curves of different Bi 2 Se 3 films (2 QL, 4 QL, 8 QL, 10 QL, 16 QL) excited by 600, 700, and 800 nm lasers; (b), (d), (f) fitting curves of Bi 2 Se 3 (16 QL) fitted by different models excited by 600, 700, and 800 nm lasers.
Fig. 4.
Fig. 4. (a) Diagrammatic sketch of carrier transition in Bi s Se 3 . Different from linear excitation, nonlinear excitation will pump the electrons from the valence band to the conduction band rather than from the Fermi level. (b), (c), (d) Saturation intensity/intrinsic nonlinear absorption coefficient/FCA cross section of Bi 2 Se 3 with different thickness excited by 600 to 800 nm lasers, where α NL 0 is the intrinsic nonlinear absorption coefficient and I s is the saturation intensity of α NL 0 .
Fig. 5.
Fig. 5. Relaxation process of carriers in 16-layer Bi 2 Se 3 films excited by 600–660 nm lasers. When the photon energy descends from 2.07    eV (600 nm) to 1.88    eV (660 nm), the fast relaxation time ( τ 1 ) of carriers corresponding to the band increases from 0.64 to 0.83 ps.

Tables (4)

Tables Icon

Table 1. FCA Cross Section σ FCA of Bi 2 Se 3 Films under Different Excitation Wavelengths ( cm 2 , × 10 22 )

Tables Icon

Table 2. Saturation Intensity I s of Bi 2 Se 3 Films under Different Excitation Wavelengths ( GW / cm 2 )

Tables Icon

Table 3. Nonlinear Absorption Coefficient α NL 0 of Bi 2 Se 3 Films under Different Excitation Wavelengths (cm/GW, × 10 4 )

Tables Icon

Table 4. Modulation Depth of Bi 2 Se 3 (Unit: dB)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I d z = α ( I ) ,
α ( I ) = α 0 1 + I / I s 0 , classical SA model ,
α ( I ) = α 0 + ( α s + α r s ) I ,
α NL = α s + α r s ,
α ( I ) = α 0 + α NL 0 1 + I / I s I , HSA model ,
α ( I ) = α 0 + α NL 0 1 + I / I s I , In_HSA model ,
T = T H + T FCA , HSA + FCA model ,
T FCA = ( F c F 0 ) ln ( 1 + F 0 F c ) ,
MD = 10 × log ( T max / T min ) ,

Metrics