Abstract

We experimentally demonstrate an ultrafast mode-locker based on a CoSb3 skutterudite topological insulator for femtosecond mode-locking of a fiber laser. The mode-locker was implemented on a side-polished fiber platform by depositing a CoSb3/PVA composite. The measured modulation depth and saturation power for the transverse-electric mode input were 5% and 8.7  W, respectively, and 2.8% and 10.6  W for the transverse-magnetic mode input. By incorporating this mode-locker into an erbium-doped fiber-based ring cavity, we were able to readily generate mode-locked, soliton pulses having a pulse width of 833  fs at 1557.9 nm. The 3-dB bandwidth of the output pulses and time-bandwidth product were 3.44 and 0.353 nm, respectively. To the best of the authors’ knowledge, this is the first demonstration of the use of a skutterudite-based saturable absorber for femtosecond mode-locked pulse generation.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber

Joonhoi Koo, June Park, Junsu Lee, Young Min Jhon, and Ju Han Lee
Opt. Express 24(10) 10575-10589 (2016)

All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber

Jinho Lee, Joonhoi Koo, Junsu Lee, Young Min Jhon, and Ju Han Lee
Opt. Mater. Express 7(8) 2968-2979 (2017)

Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator

Junsu Lee, Joonhoi Koo, Young Min Jhon, and Ju Han Lee
Opt. Express 23(5) 6359-6369 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
    [Crossref]
  3. M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [Crossref]
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  5. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
    [Crossref]
  6. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007).
    [Crossref]
  7. M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
    [Crossref]
  8. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [Crossref]
  9. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
    [Crossref]
  10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  11. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  12. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
    [Crossref]
  13. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  14. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
    [Crossref]
  15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
    [Crossref]
  16. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
    [Crossref]
  17. M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
    [Crossref]
  18. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
    [Crossref]
  19. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
    [Crossref]
  20. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
    [Crossref]
  21. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
    [Crossref]
  22. Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
    [Crossref]
  23. J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
    [Crossref]
  24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.
  25. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  26. Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
    [Crossref]
  27. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  28. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  29. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  30. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
    [Crossref]
  31. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
    [Crossref]
  32. J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
    [Crossref]
  33. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  34. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  35. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
    [Crossref]
  36. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
    [Crossref]
  37. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
    [Crossref]
  38. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
    [Crossref]
  39. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
    [Crossref]
  40. J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
    [Crossref]
  41. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
    [Crossref]
  42. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
    [Crossref]
  43. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
    [Crossref]
  44. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
    [Crossref]
  45. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
    [Crossref]
  46. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
    [Crossref]
  47. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
    [Crossref]
  48. T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
    [Crossref]
  49. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
    [Crossref]
  50. X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
    [Crossref]
  51. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
    [Crossref]
  52. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
    [Crossref]
  53. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
    [Crossref]
  54. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  55. Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
    [Crossref]
  56. K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
    [Crossref]
  57. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
    [Crossref]
  58. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
    [Crossref]
  59. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  60. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
    [Crossref]
  61. J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
    [Crossref]
  62. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
    [Crossref]
  63. J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
    [Crossref]
  64. G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
    [Crossref]
  65. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
    [Crossref]
  66. Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
    [Crossref]
  67. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
    [Crossref]
  68. V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
    [Crossref]
  69. B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
    [Crossref]
  70. M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
    [Crossref]
  71. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  72. J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
    [Crossref]
  73. X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
    [Crossref]
  74. L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
    [Crossref]
  75. M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
    [Crossref]
  76. D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
    [Crossref]
  77. O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
    [Crossref]
  78. R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
    [Crossref]
  79. M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
    [Crossref]
  80. W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
    [Crossref]
  81. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
    [Crossref]
  82. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
    [Crossref]
  83. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [Crossref]
  84. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
    [Crossref]

2018 (2)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

2017 (7)

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

2016 (10)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

2015 (15)

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

2014 (11)

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

2013 (6)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

2012 (10)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

2011 (2)

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

2010 (3)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

2009 (3)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

2007 (1)

2004 (2)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
[Crossref]

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2002 (1)

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

2001 (1)

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

1998 (1)

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

1996 (3)

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1995 (1)

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

1981 (1)

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

1973 (1)

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Aasthi, D. K.

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Abramski, K. M.

Amrithapandian, S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Anasori, B.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Arnache, O. L.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Arutyunyan, N. R.

Asokan, K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Avasthi, D. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Badrinarayanan, S.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Bae, M.-K.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Bala, M.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Bao, Q.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bennington, S.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Bernard, F.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Boguslawski, J.

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Borshchevsky, A.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Caillat, T.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Cao, G.

Chakoumakos, B. C.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Chang, Y. M.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Chen, B.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Chen, C.-L.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Chen, H.

Chen, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

Chen, S.

Chen, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Chernysheva, M. A.

Chi, H.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Choi, W.-K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Chung, H.

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

Coldea, R.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Cui, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Dai, P.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Dianov, E. M.

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Dong, C.-L.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Du, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Du, J.

Emplit, P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Endres, M. G.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Feldman, J. L.

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

Felser, C.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Fermann, M.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Fleurial, J.-P.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Freeman, E. J.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Gajewski, D. A.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Gao, W. L.

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Ge, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Gogotsi, Y.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Goh, C. S.

Gorza, S. P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Grodecki, K.

Gu, M.

Guo, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

Guo, Z.

Guo, Z.-N.

Gupta, S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Han, W.-S.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Hartl, I.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hasan, T.

Hegde, R. I.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Howe, R. C. T.

Hu, G.

Hu, J.

Hu, X. B.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Huang, H.

Huang, Q. J.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Jablonski, M.

Jang, S.-Y.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Jeon, J.

Jhon, Y. I.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

Jia, Z. X.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Jiang, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Jiang, G.

Jiang, H. D.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Jiang, T.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Jiang, X.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jiang, X.-F.

Joo, B. S.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, M.

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Kang, Z.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kelleher, E. J. R.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

Keppens, V.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Kim, S. J.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Ko, S.

Koo, J.

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kowalczyk, M.

Krajewska, A.

Krylov, A. A.

Kryukov, P. G.

Lee, J.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

Lee, J. H.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Lee, K.

Lee, S.

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Li, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Li, H.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Li, I. L.

Li, N.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Li, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Li, Z. F.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liang, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Lin, G.-R.

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, Y.-H.

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

Liu, A.

Liu, H.

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liu, J.

Liu, L.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Liu, L. X.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liu, M.

Liu, M. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Liu, W.-M.

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lu, L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Lu, S.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

Lu, S. B.

Luo, A.-P.

Luo, Z.-C.

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Lv, P.

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Ma, J.

Macherzynski, W.

Mandrus, D.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Mao, D.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Maple, M. B.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Mars, K.

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Meisner, G. P.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Mikula, A.

Morelli, D. T.

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Morgan, W. E.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Müchler, L.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Obraztsova, E. D.

Paletko, P.

Pannu, C.

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Pardo, V.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Park, J.

Park, K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Pasternak, I.

Peng, T.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Pickett, W. E.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Pino, J.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Popov, S. V.

Pozharov, A. S.

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Pronraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Qi, X.-L.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Qian, L. J.

Qin, G.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, G. S.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Qin, W.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, W. P.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Rogl, G.

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Rogl, P.

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Ruan, S.

Runcorn, T. H.

Sainkar, S. R.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Sales, B. C.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Sánchez, L. C.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Seo, M.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Set, S. Y.

She, X.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shin, W.

Singh, D. J.

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

Sinha, A. P. B.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Smith, J. C.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Sobon, G.

Song, K.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Song, W. L.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Song, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Song, Y.-W.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007).
[Crossref]

Sotor, J.

Srivastava, S. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Stec, W. J.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Strupinski, W.

Su, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tanaka, Y.

Tang, D.

Tang, D. Y.

Tang, P.

Tang, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Taylor, J. R.

Tian, Q.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Torrisi, F.

Tripathi, S. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Tripathi, T. S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Uher, C.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Vandersande, J.

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, B.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, G.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Wang, H.

Wang, H. H.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Wang, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, J. Y.

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[Crossref]

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Wang, K.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, P.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, X.-D.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Wang, Y.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wazer, J. R. V.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wen, S.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wen, S. C.

Wen, S.-C.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Woodward, R. I.

Wu, K.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Wu, S.

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Xiao, P.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xie, C. S.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Xie, G. Q.

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Xu, J.

Xu, W.-C.

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Xu, Y.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Xu, Z.-C. W.-C.

Yaguchi, H.

Yamashita, S.

Yan, B.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Yan, P.

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Yang, H.

Yang, J.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Yang, M.

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Yang, Q.-H.

Yang, R.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Yang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Yu, B.-K.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, H. H.

Yu, X.

Yu, X.-F.

Yuan, P.

Zeng, D. W.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhang, H.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Zhang, H. J.

Zhang, L.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Zhang, Q.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Zhang, S.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhang, S.-C.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Zhang, X.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

Zhao, C.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Zhao, C.-J.

Zhao, J.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zhao, N.

Zhao, S. R.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Zheng, J.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Zheng, X.-W.

Zhou, L.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhou, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Zhu, B. L.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Zou, W.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zybala, R.

2D Mater. (1)

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Adv. Funct. Mater. (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Adv. Mater. (2)

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Adv. Opt. Mater. (1)

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Ann. Phys. (1)

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Appl. Phys. Lett. (4)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Chem. Mater. (1)

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Chem. Phys. Lett. (1)

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Curr. Opin. Green Sustain. Chem. (1)

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Inorg. Chem. (1)

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

J. Appl. Phys. (1)

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Sci. Mater. Electron. (1)

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

J. Opt. (1)

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Laser Phys. Lett. (6)

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Mater. Lett. (1)

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Opt. Commun. (1)

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Opt. Eng. (1)

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

Opt. Express (16)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (2)

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Phys. Rev. B (5)

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Rev. Mod. Phys. (1)

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Sci. Rep. (3)

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Small (1)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Other (1)

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Measured (a) Raman spectrum and (b) energy-dispersive X-ray spectroscopy (EDS) profile of the cobalt antimonide (CoSb3) particle. Inset: measured SEM image of the prepared CoSb3 powder.
Fig. 2.
Fig. 2. Measured X-ray photoelectron spectroscopy (XPS) profiles: (a) cobalt (Co) 2p spectrum and (b) antimony (Sb) 3d spectrum of the CoSb3 particle.
Fig. 3.
Fig. 3. (a) Schematic of the cobalt antimonide (CoSb3)/polyvinyl alcohol (PVA)-deposited side-polished fiber. (b) Measured linear optical-absorption spectrum of the CoSb3/PVA composite.
Fig. 4.
Fig. 4. (a) Measurement setup for nonlinear transmission curves of the CoSb3/PVA-based SA. Measured nonlinear transmission curves of the CoSb3/PVA-deposited side-polished fiber: (b) transverse electric (TE) mode and (c) transverse magnetic (TM) mode.
Fig. 5.
Fig. 5. Mode-locked fiber laser configuration.
Fig. 6.
Fig. 6. Measured (a) optical spectrum (resolution bandwidth: 0.05 nm) and (b) oscilloscope trace of the output pulses. Inset: oscilloscope trace over the narrow span.
Fig. 7.
Fig. 7. Measured (a) autocorrelation trace of the output pulses and (b) electrical spectrum of the output pulses. Inset: measured electrical spectrum over a span of 1 GHz.

Tables (1)

Tables Icon

Table 1. Performance Comparison Between the Present Work and the Previously Demonstrated Mode-Locked Erbium-Doped Fiber Lasers Incorporating Other Saturable Absorption Materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔT·exp(IIsat)Tns,