Abstract

Searching for an ultrahigh-repetition-rate pulse on the order of hundreds of gigahertz (GHz) is still a challenging task in the ultrafast laser community. Recently, high-quality silicon/silica-based resonators were exploited to generate a high-repetition-rate pulse based on the filter-driven four-wave mixing effect in fiber lasers. However, despite their great performance, the silicon/silica-based resonators still have some drawbacks, such as single waveband operation and low coupling efficiency between the fiber and resonators. To overcome these drawbacks, herein we proposed an all-fiber broadband resonator fabricated by depositing the graphene onto a microfiber knot. As a proof-of-concept experiment, the graphene-deposited broadband microfiber knot resonator (MKR) was applied to Er- and Yb-doped fiber lasers operating at two different wavebands, respectively, to efficiently generate hundreds-of-GHz-repetition-rate pulses. Such a graphene-deposited broadband MKR could open some new applications in ultrafast laser technology, broadband optical frequency comb generation, and other related fields of photonics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser

You-Li Qi, Hao Liu, Hu Cui, Yu-Qi Huang, Qiu-Yi Ning, Meng Liu, Zhi-Chao Luo, Ai-Ping Luo, and Wen-Cheng Xu
Opt. Express 23(14) 17720-17726 (2015)

Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate

Xiao-Mei Tan, Hong-Jie Chen, Hu Cui, Yao-Kun Lv, Guan-Kai Zhao, Zhi-Chao Luo, Ai-Ping Luo, and Wen-Cheng Xu
Opt. Express 25(14) 16291-16299 (2017)

Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser

Meng Liu, Xu-Wu Zheng, You-Li Qi, Hao Liu, Ai-Ping Luo, Zhi-Chao Luo, Wen-Cheng Xu, Chu-Jun Zhao, and Han Zhang
Opt. Express 22(19) 22841-22846 (2014)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  2. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  3. F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  4. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
    [Crossref]
  5. Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
    [Crossref]
  6. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011).
    [Crossref]
  7. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sørensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315–1321 (1998).
    [Crossref]
  8. S. M. Zhang, F. Y. Lu, X. Y. Dong, P. Shum, X. F. Yang, X. Q. Zhou, Y. D. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
    [Crossref]
  9. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100  GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
    [Crossref]
  10. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640  GHz,” Opt. Lett. 34, 3902–3904 (2009).
    [Crossref]
  11. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
    [Crossref]
  12. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref]
  13. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  14. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
    [Crossref]
  15. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  16. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  17. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  18. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  19. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  20. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  21. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
    [Crossref]
  22. S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
    [Crossref]
  23. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
    [Crossref]
  24. L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
    [Crossref]
  25. W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
    [Crossref]
  26. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  27. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  28. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  29. L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
    [Crossref]
  30. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
    [Crossref]
  31. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
    [Crossref]
  32. R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
    [Crossref]
  33. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
    [Crossref]
  34. Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
    [Crossref]
  35. X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
    [Crossref]
  36. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  37. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  38. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
    [Crossref]
  39. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
    [Crossref]
  40. A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3, A69–A78 (2015).
    [Crossref]
  41. R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3, A30–A42 (2015).
    [Crossref]
  42. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
    [Crossref]
  43. D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, and J. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3, A43–A46 (2015).
    [Crossref]
  44. Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
    [Crossref]
  45. P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
    [Crossref]
  46. D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
    [Crossref]
  47. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  48. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
    [Crossref]
  49. Z. Q. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
    [Crossref]
  50. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
    [Crossref]
  51. R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
    [Crossref]
  52. Y. Wu, B. C. Yao, Q. Y. Feng, X. L. Cao, X. Y. Zhou, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, Y. F. Chen, and K. S. Chiang, “Generation of cascaded four-wave-mixing with graphene-coated microfiber,” Photon. Res. 3, A64–A68 (2015).
    [Crossref]
  53. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
    [Crossref]
  54. K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanescent light,” Opt. Express 17, 18364–18370 (2009).
    [Crossref]
  55. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  56. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
    [Crossref]
  57. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [Crossref]
  58. M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
    [Crossref]
  59. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
    [Crossref]
  60. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B 25, 1178–1186 (2008).
    [Crossref]
  61. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
    [Crossref]
  62. W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37, 4323–4325 (2012).
    [Crossref]

2018 (1)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

2017 (3)

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

2015 (12)

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3, A69–A78 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3, A30–A42 (2015).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, and J. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3, A43–A46 (2015).
[Crossref]

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Y. Wu, B. C. Yao, Q. Y. Feng, X. L. Cao, X. Y. Zhou, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, Y. F. Chen, and K. S. Chiang, “Generation of cascaded four-wave-mixing with graphene-coated microfiber,” Photon. Res. 3, A64–A68 (2015).
[Crossref]

2014 (5)

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

2013 (6)

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

2012 (6)

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37, 4323–4325 (2012).
[Crossref]

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (5)

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011).
[Crossref]

Z. Q. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[Crossref]

2010 (6)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2009 (4)

2008 (2)

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B 25, 1178–1186 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (3)

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100  GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

1999 (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Alasia, D.

Andrekson, P. A.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Bao, Q.

Bao, Q. L.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Barsoum, M. W.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Brambilla, G.

Cai, Z.

Cao, R.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Cao, X. L.

Cardenas, J.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Chen, J.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Z. Q. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[Crossref]

Chen, S.

Chen, S. Q.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Chen, X.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Chen, Y.

Chen, Y. F.

Chen, Y. X.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

Chiang, K. S.

Chien, H. C.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Chiu, H. Y.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Chong, A.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Chow, C. W.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Christiansen, P. L.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Chu, S. T.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Ciesielski, R.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Clausen, C. B.

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B 25, 1178–1186 (2008).
[Crossref]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100  GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Comin, A.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Del’Haye, P.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Dong, J.

Dong, X. Y.

Donkers, K.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Du, J.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Eggleton, B. J.

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fan, D.

Fan, D. Y.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Fan, W.

Feng, D.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Feng, Q. Y.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Ferrari, A. C.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Finazzi, V.

Foster, M. A.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gaeta, A. L.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gan, J. L.

Gan, X.

Ge, Q.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Ge, Y. Q.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Godbout, N.

Gogotsi, Y.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gong, Y.

Gong, Y. D.

Griffith, A. G.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grudinin, I. S.

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Guo, Z.

Guo, Z. N.

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Handloser, M.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Hartschuh, A.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hasan, T.

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3, A30–A42 (2015).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

He, Z. L.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Heon, M.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Hogg, R. A.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Howe, R. C. T.

Hu, G.

Hu, L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Hu, X.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Hui Chen, X.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Hultman, L.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Jiang, B.

Jiang, G.

Jiang, G. B.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Jiang, X. F.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Jiang, X. T.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Johnson, A. R.

Jussila, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Jyu, S. S.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Karvonen, L.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Kashiwagi, K.

Kelleher, E. J. R.

Keller, U.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kockaert, P.

Kumar, J.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Kumar, N.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Kurmulis, S.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Kurtoglu, M.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Lai, Y.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Lamont, M. R.

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Levy, J. S.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Li, D.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Li, J. Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Li, L.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Li, Y.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Li, Y. H.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Liang, W. Y.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Liang, Z. M.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

Lin, R.

Lin, R. Y.

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Lipsanen, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Lipson, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Little, B. E.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Liu, A.

Liu, A. J.

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Liu, H.

Liu, M.

Liu, S. X.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lombardo, A.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Lu, C.

Lu, F. Y.

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Lu, J.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Lu, S.

Luo, A. P.

Luo, S. J.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Luo, Z. C.

Luo, Z. Q.

Ma, C.

Maleki, L.

Mangold, M.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Mao, D.

Martinez, A.

Massar, S.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Mohanty, A.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Morandotti, R.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Moss, D. J.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Naguib, M.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Nakazawa, M.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
[Crossref]

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Ni, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Ning, Q. Y.

Niu, J.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Oehler, A. E. H.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Okawachi, Y.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Pasquazi, A.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Ping, L. K.

Piredda, G.

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Presser, V.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Quiroga-Teixeiro, M.

Rao, Y. J.

Razzari, L.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Renninger, W.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Resan, B.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Richardson, D. J.

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

Ruan, S.

Ruan, S. C.

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Saha, K.

Salem, R.

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schröder, J.

Schwelb, O.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shim, B.

Shum, P.

Song, Y. F.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

Sørensen, M. P.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Suedmeyer, T.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Sun, Z.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Sylvestre, T.

Tamura, K.

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Tang, D.

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, P. H.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Tang, R.

Tong, L. M.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Torrisi, F.

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3, A30–A42 (2015).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tsang, H. K.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Vanholsbeeck, F.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Virally, S.

Vo, T. D.

Wabnitz, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, F. Z.

Wang, G.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Wang, H. D.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Wang, J.

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wang, L.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Wang, Q.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, R.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Wang, W.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Wang, X. D.

Wang, Y.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z. G.

Wei, X. M.

Weiner, A. M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Weingarten, K. J.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Wen, Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Wen, S.

Wen, S. C.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

Weng, J.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wise, F. W.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Wong, C. Y.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Woodward, R. I.

Wu, D.

Wu, H.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Wu, K.

Wu, M.

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Wu, Y.

Xu, H.

Xu, S. H.

Xu, W. C.

Xu, Y. J.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

Xue, X.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Yamashita, S.

Yan, P.

Yan, P. G.

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Yang, H. P.

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

Yang, L. G.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Yang, Q.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Yang, X. F.

Yang, Z. M.

Yao, B. C.

Ye, C.

Ye, G.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Yeh, C. H.

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

Yoshida, E.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
[Crossref]

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Yu, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, N.

Yu, X.

Yu, X. F.

Yu, Y.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Zhang, F.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Zhang, H.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, and J. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3, A43–A46 (2015).
[Crossref]

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, J.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Zhang, K.

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

Zhang, M.

Zhang, S. M.

Zhang, W.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Zhang, W. L.

Zhang, X.

Zhang, Y.

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Zhang, Z. S.

Zhang, Z. Y.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Zhao, C.

Zhao, C. J.

Zhao, H.

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Zhao, J.

Zhao, W.

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Zheng, J.

Zheng, X. W.

Zhou, K. J.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

Zhou, M.

Zhou, X. Q.

Zhou, X. Y.

Zou, Y.

ACS Appl. Mater. Interfaces (1)

R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

ACS Photon. (1)

W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4, 1677–1683 (2017).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater. 23, 4248–4253 (2011).
[Crossref]

Appl. Phys. Lett. (2)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Electron. Lett. (1)

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

IEEE Photon. J. (1)

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring,” IEEE Photon. J. 5, 1502107 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, and S. C. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photon. Technol. Lett. 27, 951–954 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. C (1)

Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, and H. Zhang, “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (2)

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).
[Crossref]

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Laser Phys. Lett. (2)

L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, “A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator,” Laser Phys. Lett. 11, 065101 (2014).
[Crossref]

Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, and S. C. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]

Nano Lett. (1)

R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy,” Nano Lett. 15, 4968–4972 (2015).
[Crossref]

Nat. Commun. (2)

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Nat. Nanotechnol. (2)

L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372–377 (2014).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (5)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (9)

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[Crossref]

K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanescent light,” Opt. Express 17, 18364–18370 (2009).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27363 (2012).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011).
[Crossref]

Opt. Lett. (10)

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37, 4323–4325 (2012).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640  GHz,” Opt. Lett. 34, 3902–3904 (2009).
[Crossref]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
[Crossref]

S. M. Zhang, F. Y. Lu, X. Y. Dong, P. Shum, X. F. Yang, X. Q. Zhou, Y. D. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
[Crossref]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100  GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref]

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
[Crossref]

Photon. Res. (4)

Phys. Rep. (1)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Phys. Rev. Lett. (1)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Rev. Mod. Phys. (1)

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Sci. Rep. (3)

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation,” Sci. Rep. 5, 15899 (2015).
[Crossref]

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2, 477 (2012).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref]

Science (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Microscopy image of the fabricated MKR; (b) microscopy image of the graphene-deposited MKR; (c) scattering evanescent field along the graphene-deposited MKR.
Fig. 2.
Fig. 2. Spectral response of the graphene-deposited MKR. Red solid line, measured spectral response of the graphene-deposited MKR; blue dotted line, theoretically calculated spectral response of the graphene-deposited MKR.
Fig. 3.
Fig. 3. Schematic of the ultrafast fiber laser used in the experiment.
Fig. 4.
Fig. 4. FD-FWM mode-locking operation in the EDF laser based on graphene-deposited MKR. (a) Output spectrum; (b) corresponding autocorrelation trace.
Fig. 5.
Fig. 5. Stability of the proposed FD-FWM mode-locked fiber laser. (a) Repeatedly scanned output; (b) power fluctuation tracking.
Fig. 6.
Fig. 6. FD-FWM mode-locking operation in the YDF laser based on graphene-deposited MKR. (a) Output spectrum; (b) autocorrelation trace; (c) repeatedly scanned output 20 times with a 5-min interval; (d) power fluctuation of each lasing line within 100 min.