Abstract

We have used a gold nanohole array to trap single polystyrene nanoparticles, with a mean diameter of 30 nm, into separated hot spots located at connecting nanoslot regions. A high trap stiffness of approximately 0.85  fN/(nm·mW) at a low-incident laser intensity of 0.51  mW/μm2 at 980 nm was obtained. The experimental results were compared to the simulated trapping force, and a reasonable match was achieved. This plasmonic array is useful for lab-on-a-chip applications and has particular appeal for trapping multiple nanoparticles with predefined separations or arranged in patterns in order to study interactions between them.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities

Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, and Yun-Feng Xiao
Photon. Res. 6(2) 99-108 (2018)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  3. K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
    [Crossref]
  4. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
    [Crossref]
  5. Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
    [Crossref]
  6. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
    [Crossref]
  7. M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
    [Crossref]
  8. J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
    [Crossref]
  9. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
    [Crossref]
  10. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
    [Crossref]
  11. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
    [Crossref]
  12. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref]
  13. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  14. M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
    [Crossref]
  15. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
    [Crossref]
  16. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1, 515–528 (2002).
    [Crossref]
  17. P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
  18. A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12, 5581–5586 (2012).
    [Crossref]
  19. K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” Chem. Phys. Chem. 13, 2639–2648 (2012).
    [Crossref]
  20. M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
    [Crossref]
  21. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
    [Crossref]
  22. https://www.sigmaaldrich.com/catalog/DataSheetPage.do?brandKey=SIGMA&symbol=L5155 .
  23. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref]
  24. R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
    [Crossref]
  25. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
    [Crossref]
  26. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
    [Crossref]
  27. L. Wang, Y. Cao, T. Zhu, R. Feng, F. Sun, and W. Ding, “Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity,” Opt. Express 25, 29761–29768 (2017).
    [Crossref]
  28. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref]
  29. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref]
  30. A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
    [Crossref]
  31. J. Happel and H. Brener, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, 1983).
  32. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
    [Crossref]
  33. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25, 25574–25587 (2017).
    [Crossref]
  34. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21, 13896–13905 (2013).
    [Crossref]
  35. P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
    [Crossref]
  36. L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
    [Crossref]
  37. X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
    [Crossref]

2018 (1)

X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
[Crossref]

2017 (2)

2016 (3)

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
[Crossref]

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

2015 (2)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

2014 (2)

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref]

2013 (4)

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21, 13896–13905 (2013).
[Crossref]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

2012 (6)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12, 5581–5586 (2012).
[Crossref]

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” Chem. Phys. Chem. 13, 2639–2648 (2012).
[Crossref]

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref]

2011 (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

2010 (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

2009 (2)

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

2008 (2)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

2005 (2)

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
[Crossref]

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
[Crossref]

2002 (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1, 515–528 (2002).
[Crossref]

1995 (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

1986 (1)

1967 (1)

A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[Crossref]

Acimovic, S. S.

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

Afanasiev, A. E.

Al-Balushi, A. A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Arsenin, A. V.

Ashkin, A.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Balykin, V. I.

Baturin, A. S.

Bawendi, M. G.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Berthelot, J.

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

Bischof, T. S.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Bjorkholm, J. E.

Brener, H.

J. Happel and H. Brener, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, 1983).

Brenner, H.

A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[Crossref]

Brown, P. O.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Cao, Y.

Chang, D. E.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

Chen, K. Y.

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Chen, O.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Chow, E. K.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Choy, J. T.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Chu, S.

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1, 515–528 (2002).
[Crossref]

Cox, R. G.

A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[Crossref]

Crozier, K. B.

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” Chem. Phys. Chem. 13, 2639–2648 (2012).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Cyr, B. R.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Daly, M.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Davis, R. W.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

de Abajo, F. J. G.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Ding, W.

Dionne, J. A.

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12, 5581–5586 (2012).
[Crossref]

Dziedzic, J. M.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

Erickson, D.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Fedyanin, D. Y.

Feng, R.

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Goldman, A. J.

A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[Crossref]

Gordon, R.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Han, X.

X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
[Crossref]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Happel, J.

J. Happel and H. Brener, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, 1983).

Huang, I. C.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Huang, J. S.

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Hung, C. C.

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Jensen, R. A.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Jiang, H.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Juan, M. L.

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref]

Kreuzer, M. P.

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Kuzin, A. A.

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Lee, A. T.

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Loncar, M.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Melentiev, P. N.

Mestres, P.

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Neumeier, L.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

Nic Chormaic, S.

X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
[Crossref]

M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
[Crossref]

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Nordlander, P.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref]

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).

Quidant, R.

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Renger, J.

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

Rennehan, D. W.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Saleh, A. A.

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12, 5581–5586 (2012).
[Crossref]

Sasaki, K.

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[Crossref]

Schena, M.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Sergides, M.

M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
[Crossref]

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Shalon, D.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

Shoji, T.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Stebunov, Y. V.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Sun, F.

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Tanaka, Y.

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[Crossref]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

Truong, V. G.

X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
[Crossref]

M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
[Crossref]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Vo-Dinh, T.

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
[Crossref]

Volkov, V. S.

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Wabuyele, M. B.

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
[Crossref]

Wang, K.

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” Chem. Phys. Chem. 13, 2639–2648 (2012).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Wang, L.

Yakubovsky, D. I.

Yang, A. H. J.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Yang, Y. T.

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Zehtabi-Oskuie, A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Zhu, T.

ACS Photon. (1)

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Anal. Chem. (1)

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
[Crossref]

Appl. Phys. Lett. (1)

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[Crossref]

Chem. Eng. Sci. (1)

A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[Crossref]

Chem. Phys. Chem. (1)

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” Chem. Phys. Chem. 13, 2639–2648 (2012).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1, 2327–2333 (2010).
[Crossref]

Lab Chip (1)

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13, 2563–2568 (2013).
[Crossref]

Laser Photon. Rev. (1)

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Light Sci. Appl. (1)

P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Nano Futures (1)

X. Han, V. G. Truong, and S. Nic Chormaic, “Efficient microparticle trapping with plasmonic annular apertures arrays,” Nano Futures 2, 035007 (2018).
[Crossref]

Nano Lett. (8)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref]

K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118–4122 (2013).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref]

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12, 5581–5586 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Nanotechnology (1)

M. Sergides, V. G. Truong, and S. Nic Chormaic, “Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection,” Nanotechnology 27, 365301 (2016).
[Crossref]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Nat. Nanotechnol. (2)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9, 295–299 (2014).
[Crossref]

Nat. Photonics (2)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Nat. Rev. Drug Discov. (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1, 515–528 (2002).
[Crossref]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

New J. Phys. (1)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
[Crossref]

Science (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
[Crossref]

Other (3)

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).

J. Happel and H. Brener, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, 1983).

https://www.sigmaaldrich.com/catalog/DataSheetPage.do?brandKey=SIGMA&symbol=L5155 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) SEM image of a fabricated nanohole array. The nanoslot is designed to connect the nanoholes of diameter d, along the x direction, and w is the width of the nanoslot, i.e., the separation between the nanotips. Λ is the period for both the x and y directions; (b) higher magnification image of double nanoholes, fabricated using the same conditions as for (a) and located 3 μm from the edge of the array. The z direction is pointing into the plane of the paper.
Fig. 2.
Fig. 2. (a) Simulated and (b) experimental extinction curves extracted from the transmission spectra; (c) energy density from the highest near-field confined area and (d) trapping force along the z direction as a function of wavelength.
Fig. 3.
Fig. 3. (a) Electric field distribution for the y=0 plane; (b) trapping force and (c) the corresponding potential curve as a function of particle position along the z direction for x=0  nm and y=0  nm.
Fig. 4.
Fig. 4. Electric field distribution on the (a) z=18  nm and (b) x=0  nm planes. Potential plots for a 30 nm particle as a function of the position of the particle along (c) the x direction and (d) the y direction. The sweep directions are shown in (a) and (b) using white arrows for illustration purposes.
Fig. 5.
Fig. 5. Raw data trace of transmission signal against time. A zoomed in step increase around the time point of 147.7 s is shown in the inset, which represents a time interval of 0.003 s.
Fig. 6.
Fig. 6. (a) Trap stiffness for a single 30 nm PS sphere in a near-field trap as a function of wavelength. The experiment was done for an incident laser intensity of 0.57  mW/μm2. The presented theoretical calculation and experimental observations were normalized to 1  mW/μm2 laser intensity. Stars, theory; solid circles, experiment; (b) trap stiffness as a function of laser intensity for an incident trapping wavelength of 980 nm. Squares, theory; polygons, experiment.

Tables (1)

Tables Icon

Table 1. Simulated and Experimental Trap Stiffnessa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F=s(TM·ns)dS,
U(r)=rF(r)dr,
dx(t)dt=kmeaγx(t)+(2kBTγ)1/2ς(t),
τ=γkmea.