Abstract

We experimentally demonstrate high-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide. A four-wave mixing conversion efficiency of 38.7  dB and a 3-dB conversion bandwidth of 35 nm are achieved in the silicon-graphene strip waveguide with an optimized light-graphene interaction length of 60 μm. The interaction length is controlled by a windowed area of silica layer on the silicon waveguide. Numerical simulations and experimental studies are carried out and show a nonlinear parameter γGOS as large as 104  W1·m1.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal

Xiao Hu, Mengqi Zeng, Andong Wang, Long Zhu, Lei Fu, and Jian Wang
Opt. Express 23(20) 26158-26167 (2015)

Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal

Xiao Hu, Yun Long, Mengxi Ji, Andong Wang, Long Zhu, Zhengsen Ruan, Yi Wang, and Jian Wang
Opt. Express 24(7) 7168-7177 (2016)

Experimental demonstration of nonlinear enhancement in a graphene-deposited microfiber

Zhihua Tu, Qiang Jin, Hangyu Bai, Xiaoyan Wang, and Shiming Gao
Appl. Opt. 56(18) 5242-5247 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32, 660–680 (2014).
    [Crossref]
  2. S. Gao, E.-K. Tien, Q. Song, Y. Huang, and O. Boyraz, “Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides,” Opt. Express 18, 11898–11903 (2010).
    [Crossref]
  3. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref]
  4. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
    [Crossref]
  5. J. V. Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s Data,” J. Lightwave Technol. 28, 209–215 (2010).
    [Crossref]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
    [Crossref]
  7. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [Crossref]
  8. L. Thylén and L. Wosinski, “Integrated photonics in the 21st century,” Photon. Res. 2, 75–81 (2014).
    [Crossref]
  9. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photon. Res. 3, B28–B46 (2015).
    [Crossref]
  10. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  11. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  12. L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
    [Crossref]
  13. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
    [Crossref]
  14. Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
    [Crossref]
  15. N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
    [Crossref]
  16. C. Donnelly and D. T. H. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
    [Crossref]
  17. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
    [Crossref]
  18. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
    [Crossref]
  19. M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23, 18679–18685 (2015).
    [Crossref]
  20. X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24, 7168–7177 (2016).
    [Crossref]
  21. H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
    [Crossref]
  22. K. K. Chow, S. Yamashita, and S. Y. Set, “Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide,” Opt. Lett. 35, 2070–2072 (2010).
    [Crossref]
  23. K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
    [Crossref]
  24. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  25. H. R. K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
    [Crossref]
  26. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
    [Crossref]
  27. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
    [Crossref]
  28. D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6, B50–B66 (2018).
    [Crossref]
  29. C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
    [Crossref]
  30. K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
    [Crossref]
  31. J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
    [Crossref]

2018 (2)

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6, B50–B66 (2018).
[Crossref]

2017 (1)

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

2016 (3)

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24, 7168–7177 (2016).
[Crossref]

2015 (4)

2014 (5)

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
[Crossref]

A. E. Willner, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32, 660–680 (2014).
[Crossref]

L. Thylén and L. Wosinski, “Integrated photonics in the 21st century,” Photon. Res. 2, 75–81 (2014).
[Crossref]

C. Donnelly and D. T. H. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
[Crossref]

2012 (2)

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

2011 (1)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

2010 (5)

2009 (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

2008 (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

2007 (1)

2006 (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[Crossref]

2005 (2)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Agarwal, A. M.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Ang, L. K.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
[Crossref]

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Boyraz, O.

Bulla, D. A.

Cai, H.

Calizo, I.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Cao, P.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Chee, A. K. L.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Chen, G. F. R.

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

Cheng, G.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Cheng, J.

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

Chitgarha, M. R.

Choi, D.-Y.

Choi, J. W.

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

Chow, K. K.

Cui, J.

Deng, L.

Deng, Q.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Donnelly, C.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Eggleton, B. J.

Erps, J. V.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Feng, G.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fukuda, H.

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Gao, S.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Gu, T.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Hacker, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Hone, J.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Hone, J. C.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Hu, X.

X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24, 7168–7177 (2016).
[Crossref]

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Huang, B.-J.

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

Huang, Q.

Huang, Y.

Iredale, T.

Itabashi, S.

Ji, M.

Jiang, X.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Jiang, Y.

Kimerling, L. C.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Kwong, D. L.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Kwong, D.-L.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Li, G.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[Crossref]

Li, H.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Li, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Li, X.

Li, Z.

M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23, 18679–18685 (2015).
[Crossref]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[Crossref]

Liang, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Lin, G.-R.

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

Lin, Y.-H.

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Liu, R.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Liu, Z.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Lo, G.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Lo, G. Q.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Long, Y.

Lu, S.

Luan, F.

Luther-Davies, B.

Madden, S.

McMillan, J. F.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Miao, L.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Ng, D. K. T.

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6, B50–B66 (2018).
[Crossref]

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Ng, S. K.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Obeng, Y.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Ooi, K. J.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Ooi, K. J. A.

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6, B50–B66 (2018).
[Crossref]

K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
[Crossref]

Pan, T.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Pelusi, M. D.

Peng, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Peng, L.-M.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Petrone, N.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Qiu, C.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Richter, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Ruan, Z.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Set, S. Y.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Shi, B.

Shoji, T.

Sipe, J. E.

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

Sohn, B.-U.

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

Song, Q.

Song, Y.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Sperling, B. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Su, S.-P.

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

Su, Y.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Takahashi, J.

Takahashi, M.

Tan, D. T. H.

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6, B50–B66 (2018).
[Crossref]

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
[Crossref]

C. Donnelly and D. T. H. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
[Crossref]

Thienpont, H.

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

J. V. Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s Data,” J. Lightwave Technol. 28, 209–215 (2010).
[Crossref]

Thylén, L.

Tien, E.-K.

Tsuchizawa, T.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Vahala, H. R. K. J.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

van der Zande, A.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Vermeulen, N.

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Walker, A. R. H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Wang, A.

Wang, J.

Wang, T.

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Wang, Y.

Watanabe, T.

Wen, S.

Willner, A. E.

Wong, C. W.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Wosinski, L.

Wu, C.-L.

C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34, 4110–4119 (2016).
[Crossref]

Wu, D.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Wu, J.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Xia, J.

Yamada, K.

Yamashita, S.

Yan, K.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Yang, J.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Yang, Y.

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Yilmaz, O. F.

Yin, B.

Yu, J.

Yu, M.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Yuan, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Zhang, H.

Zhang, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Zhao, C.

Zhou, H.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Zhou, S.

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

Zhou, Z.

Zhu, L.

Zhu, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

ACS Nano (1)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5, 9144–9153 (2011).
[Crossref]

Appl. Phys. Lett. (5)

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105, 091111 (2014).
[Crossref]

K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112, 181101 (2018).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 347–359 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[Crossref]

J. Lightwave Technol. (3)

Nat. Commun. (1)

K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Nat. Photonics (4)

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photon. Res. (4)

Phys. Rev. Lett. (1)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Sci. Rep. (1)

Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5, 13480 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Structure of the proposed GOS waveguide. (a) 3D view; (b) cross-section view along the red dashed line in (a); (c) fundamental quasi-TE mode electric field distribution of the silicon waveguide; (d) fundamental quasi-TE mode electric field distribution of the GOS waveguide. The light-graphene interaction length is labeled in (a).
Fig. 2.
Fig. 2. (a) Fabrication processes of the GOS waveguides; (b) SEM images of the GOS waveguides with different interaction lengths.
Fig. 3.
Fig. 3. (a) Experimental setup for testing the degenerate FWM of the fabricated devices; (b) FWM spectra of the silicon waveguide (black dashed line) and the silicon-graphene strip waveguide with a 60-μm GOS length (red solid line); insets are the zoom-in traces of the pumps and idlers.
Fig. 4.
Fig. 4. (a) Experimental and calculated conversion efficiencies of the silicon waveguide and the silicon-graphene strip waveguide versus the input pump power; (b) experimental conversion efficiencies of the silicon waveguide (black circle) and the silicon-graphene strip waveguide (red square) versus the signal wavelength; calculated conversion efficiency of the silicon-graphene strip waveguide (blue solid line) versus the signal wavelength.
Fig. 5.
Fig. 5. (a) Absorption loss of the graphene sheet versus the length of the GOS waveguide; (b) conversion efficiency of the silicon-graphene strip waveguide versus the length of the GOS waveguide.

Tables (1)

Tables Icon

Table 1. Characteristics of FWM Process for Devices on CMOS Platformsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=(γPPLeff)2,
PP=P0eaL,
Leff=(1eaL)/a,
γ=2πλSZ2n2(x,y)dxdy(SZdxdy)2,

Metrics