Abstract

We demonstrate an integrated Si optical single-sideband (OSSB) modulator composed of a parallel dual-ring modulator (PDRM) and a quadrature hybrid coupler (QHC). Both the PDRM and the QHC are carefully designed for 30 GHz opearation, and their operations are verified by measurement. The Si OSSB modulator successfully generates a single sideband with larger than 15 dB suppression of the undesired sideband.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation

Yiwei Xie, Leimeng Zhuang, and Arthur James Lowery
Opt. Lett. 42(14) 2742-2745 (2017)

Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach–Zehnder modulators

Zihang Zhu, Shanghong Zhao, Wanze Zheng, Wei Wang, and Baoqin Lin
Appl. Opt. 54(32) 9432-9440 (2015)

Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging

Xiaoke Ruan, Ke Li, David J Thomson, Cosimo Lacava, Fanfan Meng, Iosif Demirtzioglou, Periklis Petropoulos, Yixiao Zhu, Graham T Reed, and Fan Zhang
Opt. Express 25(16) 19332-19342 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
    [Crossref]
  2. M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” J. Lightwave Technol. 16, 859–863 (1998).
    [Crossref]
  3. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
    [Crossref]
  4. M. J. Sieben, “Single sideband modulation for digital fiber optic communication systems,” Doctoral dissertation (University of Alberta, 1998). Retrieved from https://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/tape17/PQDD_0024/NQ34832.pdf .
  5. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
    [Crossref]
  6. Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
    [Crossref]
  7. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
    [Crossref]
  8. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
    [Crossref]
  9. B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
    [Crossref]
  10. P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.
  11. C.-M. Chang, G. Valicourt, S. Chandrasekhar, and P. Dong, “Differential microring modulators for intensity and phase modulation: theory and experiment,” J. Lightwave Technol. 35, 3116–3124 (2017).
    [Crossref]
  12. R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
    [Crossref]
  13. R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
    [Crossref]
  14. A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.
  15. X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
    [Crossref]
  16. L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.
  17. E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
    [Crossref]
  18. B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).
  19. K. Kojima, W. Yuan, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “An MMI-based polarization splitter using patterned metal and tilted joint,” Opt. Express 20, B371–B376 (2012).
    [Crossref]
  20. B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).
  21. M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
    [Crossref]
  22. J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
    [Crossref]
  23. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E. J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20, 13115–13122 (2012).
    [Crossref]
  24. J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech. 17, 1150–1151 (1969).
    [Crossref]
  25. Y. C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001).
    [Crossref]
  26. I. Bahl, Lumped Elements for RF and Microwave Circuits (Artech House, 2003), Chap. 12.

2017 (4)

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

C.-M. Chang, G. Valicourt, S. Chandrasekhar, and P. Dong, “Differential microring modulators for intensity and phase modulation: theory and experiment,” J. Lightwave Technol. 35, 3116–3124 (2017).
[Crossref]

2014 (1)

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

2012 (2)

2010 (1)

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

2006 (1)

E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
[Crossref]

2005 (1)

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

2003 (1)

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

2001 (1)

Y. C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001).
[Crossref]

1998 (2)

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” J. Lightwave Technol. 16, 859–863 (1998).
[Crossref]

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[Crossref]

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[Crossref]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

1969 (1)

J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech. 17, 1150–1151 (1969).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Ayazi, A.

Azadeh, S. S.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Baehr-Jones, T.

Bahl, I.

I. Bahl, Lumped Elements for RF and Microwave Circuits (Artech House, 2003), Chap. 12.

Ban, Y.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

Brimont, A.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Buhl, L. L.

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Chandrasekhar, S.

Chang, C.-M.

Chen, C.-Y.

Y. C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001).
[Crossref]

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Chen, Y.-K.

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Chiang, Y. C.

Y. C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001).
[Crossref]

Cho, S.-H.

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

Choi, W.-Y.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

Chow, F.-S.

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Conradi, J.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[Crossref]

Davies, B.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[Crossref]

Dong, P.

C.-M. Chang, G. Valicourt, S. Chandrasekhar, and P. Dong, “Differential microring modulators for intensity and phase modulation: theory and experiment,” J. Lightwave Technol. 35, 3116–3124 (2017).
[Crossref]

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

El-Fiky, E. E.

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Esman, R. D.

Fardin, E. A.

E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
[Crossref]

Fédéli, J.-M.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Frankel, M. Y.

Galan, J. V.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Ghorbani, K.

E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
[Crossref]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Gutierrez, A. M.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Hauck, J.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Herrera, J.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Hochberg, M.

Holland, A. S.

E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
[Crossref]

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

Kang, J.

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Kawanishi, T.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Khurgin, J.

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Kim, M.-H.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Knoll, D.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Koike-Akino, T.

Kojima, K.

Kroh, M.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Lange, J.

J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech. 17, 1150–1151 (1969).
[Crossref]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[Crossref]

Lee, J.-M.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

Li, R.

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Lim, A. E. J.

Lischke, S.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Liu, Y.

Mai, C.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

Marris-Morini, D.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Merget, F.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Morsy-Osman, M.

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Morsy-Osman, M. M.

Müller, J.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Nakajima, H.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Nakajima, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Nishikawa, S.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Ogiso, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[Crossref]

Parsons, K.

Patel, D.

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

Petousi, D.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Plant, D. V.

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

Rhim, J.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Romero García, S.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Samani, A.

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Sanchis, P.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Shen, B.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

Shin, M.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Shinada, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Sieben, M. J.

M. J. Sieben, “Single sideband modulation for digital fiber optic communication systems,” Doctoral dissertation (University of Alberta, 1998). Retrieved from https://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/tape17/PQDD_0024/NQ34832.pdf .

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[Crossref]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

Tsuchiya, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

Valicourt, G.

Vivien, L.

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

Wang, B.

Winzer, G.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Witzens, J.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Xie, C.

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Xie, X.

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Xing, Z.

R. Li, D. Patel, E. E. El-Fiky, A. Samani, Z. Xing, M. M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Yagyu, E.

Yamamoto, Y.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Yu, B.-M.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

Yuan, W.

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Zimmermann, L.

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

Electron. Lett. (3)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550  nm millimitre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

E. A. Fardin, A. S. Holland, and K. Ghorbani, “Electronically tunable lumped element 90° hybrid coupler,” Electron. Lett. 42, 353–355 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

IEEE Photon. Technol. Lett. (5)

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[Crossref]

R. Li, D. Patel, A. Samani, E. E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22, 941–943 (2010).
[Crossref]

X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Shin, Y. Ban, B.-M. Yu, M.-H. Kim, J. Rhim, L. Zimmermann, and W.-Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech. 17, 1150–1151 (1969).
[Crossref]

Y. C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech. 49, 476–479 (2001).
[Crossref]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Sci. Rep. (1)

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. Romero García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4, 6310 (2014).
[Crossref]

Other (7)

I. Bahl, Lumped Elements for RF and Microwave Circuits (Artech House, 2003), Chap. 12.

L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, and Y. Yamamoto, “BiCMOS silicon photonics platform,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4E.5.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A monolithically integrated Si optical single-sideband modulator,” in Fourteenth International Workshop on IEEE International Conference on Group IV Photonics, Berlin, Germany (August04–07, 2017).

B.-M. Yu, J.-M. Lee, Y. Ban, S.-H. Cho, and W.-Y. Choi, “Model parameter extraction for Si micro-ring modulators,” in Optoelectronics and Communication Conference and the Australian Conference on Optical Fiber Technology (OECC/ACOFT), Melbourne, Australia (July6–10, 2014).

M. J. Sieben, “Single sideband modulation for digital fiber optic communication systems,” Doctoral dissertation (University of Alberta, 1998). Retrieved from https://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/tape17/PQDD_0024/NQ34832.pdf .

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High-linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in IEEE International Conference on Group IV Photonics (2012), pp. 57–59.

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Block diagram of the OSSB modulator.

Fig. 2.
Fig. 2.

Microphotograph of the integrated Si OSSB modulator.

Fig. 3.
Fig. 3.

(a) Structure and (b) cross section and the electrical model of the Si MRM.

Fig. 4.
Fig. 4.

Measured and simulated electrical S11 (a) magnitude and (b) phase of the Si MRM. For simulation, extracted values shown in Table 1 are used.

Fig. 5.
Fig. 5.

Measured optical transmission spectra of the Si MRM at different bias voltages.

Fig. 6.
Fig. 6.

(a) Simulated modulation frequency response and (b) measured and simulated optical spectrum for Si MRM modulated at 30 GHz with D=90  pm.

Fig. 7.
Fig. 7.

Schematic of the QHC.

Fig. 8.
Fig. 8.

Simulated (a) magnitude of and (b) phase difference between I/Q output signals for the QHC with Si MRM loads.

Fig. 9.
Fig. 9.

Measured and simulated for (a) magnitude of and (b) phase difference between QHC I/Q output signals with 50 Ω loads.

Fig. 10.
Fig. 10.

Measured optical transmission spectra of the PDRM (a) without temperature control and zero bias voltage and (b) with temperature control at three different bias voltages. (c) Measured OSSB modulator output optical spectrum when modulated with 30 GHz, 2 Vpp sinusoidal signals at D=90  pm and 1 V bias voltage.

Fig. 11.
Fig. 11.

Measured output spectra of the OSSB modulator with different modulation frequencies.

Tables (2)

Tables Icon

Table 1. Numerical Values for MRM Electrical Parameters

Tables Icon

Table 2. L and C Values Used for QHC Implementation