Abstract

We propose and experimentally demonstrate capacitive actuation of a graphene–silicon micro-ring add/drop filter. The mechanism is based on a silicon–SiO2–graphene capacitor on top of the ring waveguide. We show the capacitive actuation of the add/drop functionality by a voltage-driven change of the graphene optical absorption. The proposed capacitive solution overcomes the need for continuous heating to keep tuned the filter’s in/out resonance and therefore eliminates “in operation” energy consumption.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter

Carlos Errando-Herranz, Frank Niklaus, Göran Stemme, and Kristinn B. Gylfason
Opt. Lett. 40(15) 3556-3559 (2015)

Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber

Xi Chen, Yuechun Shi, Fei Lou, Yiting Chen, Min Yan, Lech Wosinski, and Min Qiu
Opt. Express 22(21) 25233-25241 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [Crossref]
  2. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
    [Crossref]
  3. V. Sorianello, G. De Angelis, T. Cassese, M. V. Preite, P. Velha, A. Bianchi, M. Ronmagnoli, and F. Testa, “Polarization insensitive silicon photonics ROADM with selectable communication direction for radio access network,” Opt. Lett. 41, 5688–5691 (2016).
    [Crossref]
  4. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2013).
  5. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  6. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18, 11282 (2010).
    [Crossref]
  7. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  8. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  9. F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  10. Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.
  11. V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).
  12. V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Moshin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Opt. Express 24, 29984 (2016).
    [Crossref]
  13. Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
    [Crossref]
  14. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
    [Crossref]
  15. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
    [Crossref]
  16. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer graphene phase modulators in SOI,” Opt. Express 23, 6478–6490 (2015).
    [Crossref]
  17. P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
    [Crossref]
  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
    [Crossref]
  19. A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).
  20. Lumerical Solutions, Inc, http://www.lumerical.com/tcad-products .
  21. Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
    [Crossref]
  22. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]

2016 (2)

2015 (2)

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer graphene phase modulators in SOI,” Opt. Express 23, 6478–6490 (2015).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

2014 (2)

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

2013 (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2013).

2011 (4)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref]

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

2010 (2)

2009 (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

2007 (2)

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

2006 (1)

Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
[Crossref]

Absil, P.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Absil, P. P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Adam, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

Alessandri, C.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Alonso, B.

A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Asselberg, I.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Asselberghs, I.

V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Moshin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Opt. Express 24, 29984 (2016).
[Crossref]

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Avouris, P.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Baets, R.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2013).

Bianchi, A.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Brems, S.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Cassese, T.

Centeno, A.

A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).

Chang, Y.-C.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

Chen, H.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Contestabile, G.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Dahlem, M. S.

Das Sarma, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

De Angelis, G.

De Coster, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

De Heyn, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Drissi, Y.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Ferrari, A. C.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Geisler, M.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Goykhman, I.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Holzwarth, C. W.

Huang, Y.

Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
[Crossref]

Huyghebaert, C.

V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Moshin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Opt. Express 24, 29984 (2016).
[Crossref]

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Huyghebaerts, C.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Hwang, E. H.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

Hwang, K. C.

Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
[Crossref]

Ippen, E. P.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Itabashi, S.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Kärtner, F. X.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Khanna, A.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Khilo, A.

Kim, P.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Koppens, F. H.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Kou, R.

Lepage, G.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Liu, C.-H.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Midrio, M.

Moshin, M.

Muller, T.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Neumaier, D.

Nishi, H.

Norris, T. B.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

Ott, A. K.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Otto, M.

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2013).

Pantouvaki, M.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Pantouvaky, M.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Park, S.

Pesquera, A.

A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).

Pinczuk, A.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Polini, M.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Preite, M. V.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Reed, G. T.

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

Romagnoli, M.

Ronmagnoli, M.

Rossi, E.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Shinojima, H.

Smith, H. I.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Sorianello, V.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Testa, F.

Tsuchizawa, T.

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Van Campenhout, J.

V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Moshin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Opt. Express 24, 29984 (2016).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Van Thourhout, D.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Velha, P.

Verheyen, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Vitiello, M. S.

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Wu, J.

Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
[Crossref]

Yamada, K.

Yan, J.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Yu, Y. T.

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, Y.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

Zhong, Z.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

Zurutuza, A.

A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).

Appl. Phys. Lett. (1)

Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry,” Appl. Phys. Lett. 104, 261909 (2014).
[Crossref]

IEEE Photon. J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over 1-14 micron infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2013).

Nat. Nanotechnol. (1)

F. H. Koppens, T. Muller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B 74, 245413 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98, 166802 (2007).
[Crossref]

Proc. SPIE (1)

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Rev. Mod. Phys. (1)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011).
[Crossref]

Science (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Other (5)

A. Zurutuza, A. Centeno, B. Alonso, and A. Pesquera, “Method of manufacturing a graphene monolayer on insulating substrates,” U.S. patent9023220 B2 (June5, 2015).

Lumerical Solutions, Inc, http://www.lumerical.com/tcad-products .

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

Y. T. Yu, M. Pantouvaky, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10  Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2014), pp. 128–131.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene phase modulators,” arxiv: 1704.01525 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the SOG capacitor waveguide. (b) Top view (not to scale) of the proposed device. Gray shapes are silicon waveguides, dark gray is the highly p-doped silicon slab, green is graphene, and yellow marks the contacts.
Fig. 2.
Fig. 2. Optical micrograph picture of the device. Inset shows a detail of the MRR.
Fig. 3.
Fig. 3. Absorption and effective index of the SOG loaded waveguide at 1.55 μm versus the graphene Fermi level. Blue and red curves are for τ=300 and 30  fs, respectively.
Fig. 4.
Fig. 4. Simulated transmission at the through (solid lines) and drop (dashed lines) ports of the MRR for different graphene scattering times: (a) τ=30 and (b) 300  fs. Different colors refer to different values of the Fermi level of graphene: black is for μ=0.3  eV, red for μ=0.4  eV, and blue for μ=0.5  eV.
Fig. 5.
Fig. 5. Computed graphene Fermi level as a function of the VVDirac voltage.
Fig. 6.
Fig. 6. Experimental through (solid lines) and drop (dashed lines) transmission spectra for different VGS values. Black curves for VGS=14  V (switch disabled), red curves for VGS=0  V (switch is enabling), and blue curves for VGS=14  V (switch enabled).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ(ω)=σ02(tanhω+2μ4kBT+tanhω2μ4kBT)+iσ02πln[(ω+2μ)2(ω2μ)2+(2kBT)2]+i4σ02πμω+iτ1.
|VVDirac|=qnsCox+|μ|q=qCoxμ2π(vf)2+|μ|q.
ϵG(ω)=1+iσ(ω)ωϵ0hG,

Metrics