Abstract

The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Designing fiber tapers for tunable dispersive-wave generation from agile Yb-based pump lasers

Jesper Lægsgaard
J. Opt. Soc. Am. B 35(6) 1433-1441 (2018)

All-fiber femtosecond Cherenkov radiation source

Xiaomin Liu, Jesper Lægsgaard, Uffe Møller, Haohua Tu, Stephen A. Boppart, and Dmitry Turchinovich
Opt. Lett. 37(13) 2769-2771 (2012)

Cherenkov radiation from 1550  nm pumping in tapered photonic crystal fibers

Jesper Lægsgaard
Opt. Lett. 43(12) 2744-2747 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12, 2844–2850 (2004).
    [Crossref]
  2. H. Song, S. B. Cho, D. U. Kim, S. Jeong, and D. Y. Kim, “Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source,” Appl. Opt. 50, 4000–4004 (2011).
    [Crossref]
  3. J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source,” Opt. Express 23, 9762–9771 (2015).
    [Crossref]
  4. M. H. Madsen, P. Hansen, M. Zalkovskij, M. Karamehmedović, and J. Garnæs, “Fast characterization of moving samples with nano-textured surfaces,” Optica 2, 301–306 (2015).
    [Crossref]
  5. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [Crossref]
  6. N. Savage, “Optical parametric oscillators,” Nat. Photonics 4, 124–125 (2010).
    [Crossref]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  8. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  9. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  11. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
    [Crossref]
  12. X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
    [Crossref]
  13. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref]
  14. F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” J. Sel. Top. Quantum Electron. 18, 1412–1421 (2012).
    [Crossref]
  15. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
    [Crossref]
  16. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23, 1221–1227 (2006).
    [Crossref]
  17. S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
    [Crossref]
  18. H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17, 17983–17988 (2009).
    [Crossref]
  19. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
    [Crossref]
  20. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref]
  21. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  22. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
    [Crossref]
  23. M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22, 9498–9507 (2014).
    [Crossref]
  24. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
    [Crossref]
  25. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
    [Crossref]
  26. M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
    [Crossref]
  27. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
    [Crossref]
  28. M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
    [Crossref]
  29. C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
    [Crossref]
  30. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
    [Crossref]
  31. D. Li, W. Zheng, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo,” Opt. Lett. 36, 834–836 (2011).
    [Crossref]
  32. W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2, 71–79 (2011).
    [Crossref]
  33. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, “Practical all-fiber source of high-power, 120-fs pulses at 1  μm,” Opt. Lett. 28, 1362–1364 (2003).
    [Crossref]
  34. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29, 3183–3191 (2012).
    [Crossref]
  35. K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
    [Crossref]
  36. D. Li, W. Zheng, and J. Y. Qu, “Two-photon autofluorescence microscopy of multicolor excitation,” Opt. Lett. 34, 202–204 (2009).
    [Crossref]
  37. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontintinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17, 9858–9872 (2009).
    [Crossref]
  38. X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
    [Crossref]
  39. H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
    [Crossref]
  40. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
    [Crossref]
  41. F. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005).
    [Crossref]
  42. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  43. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003).
    [Crossref]
  44. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [Crossref]
  45. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 1–10 (2007).
    [Crossref]
  46. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
    [Crossref]

2016 (2)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

2015 (3)

2014 (3)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22, 9498–9507 (2014).
[Crossref]

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

2013 (3)

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

2012 (4)

2011 (5)

H. Song, S. B. Cho, D. U. Kim, S. Jeong, and D. Y. Kim, “Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source,” Appl. Opt. 50, 4000–4004 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

D. Li, W. Zheng, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo,” Opt. Lett. 36, 834–836 (2011).
[Crossref]

W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2, 71–79 (2011).
[Crossref]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

2010 (4)

2009 (3)

2008 (1)

2007 (2)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 1–10 (2007).
[Crossref]

2006 (2)

2005 (2)

2004 (1)

2003 (3)

2002 (1)

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

2001 (2)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

1995 (2)

J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Arai, Y.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Basché, T.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Bjarklev, A.

Boppart, S. A.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontintinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17, 9858–9872 (2009).
[Crossref]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17, 17983–17988 (2009).
[Crossref]

Brabec, T.

J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
[Crossref]

Buckley, J. R.

Budunoglu, L.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Chan, M.-C.

Chaney, E. J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Chang, G.

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Chen, J.

Chen, L.-J.

Cho, S. B.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Côté, D.

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

Dantus, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Decker, H.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

Elahi, P.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Elgin, J. N.

J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
[Crossref]

Erker, W.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Fujita, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Garnæs, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 1–10 (2007).
[Crossref]

Gürel, K.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Hansen, P.

He, J.

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Ilday, F.

Ilday, F. O.

Ilday, F. Ö.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Jeong, S.

Joannopoulos, J. D.

Johnson, S. G.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Karamehmedovic, M.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Kärtner, F.

Kärtner, F. X.

Kawata, S.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Kelly, S. M. J.

J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
[Crossref]

Kim, D. U.

Kim, D. Y.

Knox, W. H.

Kobayashi, T.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Lægsgaard, J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29, 3183–3191 (2012).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

Laegsgaard, J.

Lægsgaard, J.

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Li, C.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

Li, D.

Libori, S. E. B.

Lien, C.-H.

Lim, H.

Lin, C. P.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

Lippitz, M.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Liu, X.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
[Crossref]

Liu, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

Lu, F.

Lu, J.-Y.

Luo, Y.

Lyngsø, J. K.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Lyu, B.-H.

Madsen, M. H.

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Marjanovic, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

McConnell, G.

Miyazaki, J.

Mochizuki, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Møller, U.

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

Nagai, T.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Paltani, P.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Pastila, R. K.

Pitsillides, C.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

Puoris’haag, M.

Qu, J. Y.

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Runnels, J. M.

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref]

Russell, P. St.J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Saito, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Savage, N.

N. Savage, “Optical parametric oscillators,” Nat. Photonics 4, 124–125 (2010).
[Crossref]

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Senel, Ç.

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 1–10 (2007).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Smith, N. I.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Song, H.

Stark, S. P.

Svane, A. S.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Tong, S.

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref]

Tsurui, H.

Tu, H.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontintinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17, 9858–9872 (2009).
[Crossref]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17, 17983–17988 (2009).
[Crossref]

Turchinovich, D.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012).
[Crossref]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
[Crossref]

Uegaki, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

van Holde, K. E.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Villanueva, G. E.

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

Wang, N.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wilson, W. L.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” J. Sel. Top. Quantum Electron. 18, 1412–1421 (2012).
[Crossref]

F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, “Practical all-fiber source of high-power, 120-fs pulses at 1  μm,” Opt. Lett. 28, 1362–1364 (2003).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Xu, B.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Xu, C.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

Yamanaka, M.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

Yonemaru, Y.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

You, S.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Zalkovskij, M.

Zeng, Y.

Zhang, R.

Zhao, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Zheng, W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, and F. Ö. Ilday, “Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers,” Appl. Phys. Lett. 105, 11111 (2014).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton microscopy of live tissues with ultraviolet autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16, 516–523 (2010).
[Crossref]

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25, 892–895 (2013).
[Crossref]

J. Biomed. Opt. (1)

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20, 101202 (2015).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49, 23001 (2016).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” J. Sel. Top. Quantum Electron. 18, 1412–1421 (2012).
[Crossref]

Nat. Methods (1)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref]

Nat. Photonics (5)

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

N. Savage, “Optical parametric oscillators,” Nat. Photonics 4, 124–125 (2010).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
[Crossref]

Opt. Commun (1)

J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun 114, 321–328 (1995).
[Crossref]

Opt. Express (10)

G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12, 2844–2850 (2004).
[Crossref]

J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source,” Opt. Express 23, 9762–9771 (2015).
[Crossref]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17, 17983–17988 (2009).
[Crossref]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
[Crossref]

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22, 9498–9507 (2014).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18, 988–999 (2010).
[Crossref]

F. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21, 23188–23196 (2013).
[Crossref]

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontintinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17, 9858–9872 (2009).
[Crossref]

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 1–10 (2007).
[Crossref]

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. USA 99, 2772–2777 (2002).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

Other (2)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Supplementary Material (2)

NameDescription
» Visualization 1       Movie
» Visualization 2       Movie

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Principles of continuously tunable femtosecond fiber laser. (a) Phase-matching curves for FOCR generation for different fiber pitch dimensions, allowing for FOCR generation at different wavelengths in the visible range from a pump pulse of 1035 nm central wavelength. Circles indicate phase-matched FOCR wavelengths in the limit of weak pump power, while squares indicates the phase-matching points for a typical peak power of 100 kW. Inset: representative image of a PCF structure. (b) Peak power evolution of the pump pulse (left) and simulated spectrum (right) along a tapered PCF for FOCR generation at 580 nm from a transform-limited Gaussian input pump pulse at 1035 nm. FOCR is generated around the point of maximum soliton compression of the pump pulse in the fiber, as indicated by the green arrow. (c) Illustration of continuous FOCR tunability in a tapered PCF by a combination of power and pulse duration control of a fixed-wavelength pump pulse. Such control of the pump pulse determines the point of maximum pump pulse compression, which is the FOCR generation point within the taper, as shown in (a). The FOCR wavelength, in its turn, is defined by the local dispersion of the tapered PCF at this generation point, according to the pump-to-FOCR phase-matching condition such as shown in (a). (d) Average visible wavelength for numerically simulated FOCR spectra, as a function of pump pulse energy and duration. Well-defined FOCR peaks appear close to the FOCR generation threshold, whereas for increasing pulse energy/decreasing duration, continuum formation ensues. Circles are the experimental results. The error bars represent the uncertainty in deconvolution factor of the pulse duration from the measured autocorrelation, as explained in the Appendix A.2.
Fig. 2.
Fig. 2. Experimental setup. Simplified schematic of the tunable femtosecond Cherenkov fiber laser. By adjusting the power and compression settings, or the power alone, of a fixed-wavelength pump pulse provided by a standard mode-locked fiber laser, the output FOCR wavelength from a PCF taper is continuously tuned in a wide spectral range. Inset: the designed (solid line) and its practical realization (dots) of a PCF taper profile.
Fig. 3.
Fig. 3. Characterization of a widely tunable femtosecond fiber laser. (a) Simulated and experimentally measured spectra of tunable FOCR. (b) The far-field images of the output light. (c) Left: the measured autocorrelation curves of FOCR signals. Right: the autocorrelation FWHM calculation (dashed line) and measurement (dots) of the generated FOCR pulses, and of the pump pulses (squares).
Fig. 4.
Fig. 4. Output power, conversion efficiency, and noise as a function of laser emission wavelength. (a) Generated FOCR output power (blue dots) and its conversion efficiency (red squares). (b) The SNR of FOCR signals (dots) and of a standard ps-SC source spectrally sliced to 10 nm bandwidth (FWHM) by optical bandpass filters (dashed line).
Fig. 5.
Fig. 5. Representative image of the PCF. Λ is the PCF fiber pitch.
Fig. 6.
Fig. 6. Experimental setup of the tunable FOCR laser. OSC, pump oscillator; AMP, pump amplifier; ISO, pump isolator; G, grating; M, high reflection mirror; HWP, half-wave plate; PBS, polarization beam splitter; FM, flip mirror; AC, autocorrelator; PM, photometer; OSA, optical spectrum analyzer; DM, dichroic mirror; F, optical bandpass filter; ESA, electrical spectrum analyzer with photodiode. Inset: typical spectrum of the pump laser output.
Fig. 7.
Fig. 7. Examples of different designs (solid line) and their practical realizations (dots) for PCF tapers.
Fig. 8.
Fig. 8. Dispersion curves for three different Λ values of the PCF structure shown in the inset.
Fig. 9.
Fig. 9. Simulations of FOCR generation in linear and nonlinear taper profiles. (a), (c) Spectrum and (b), (d) temporal power profile versus propagation distance z in a (a), (b) linear and (c), (d) nonlinear taper profile, with taper and input pulse parameters as described in the text. Both spectral density (pJ/THz) and power (W) is plotted logarithmically. See also Visualization 1 and Visualization 2 for simulations of FOCR generation in linear and nonlinear taper profiles, respectively.
Fig. 10.
Fig. 10. Simulated tunable FOCR spectral profiles and temporal pulses. Selected (a) spectral profiles and (b) temporal pulses obtained after short-pass filtering the spectrum at 750 nm as simulated in the nonlinear taper structure when varying pump power and duration. The temporal pulses have been artificially shifted along the time axis for better viewing.
Fig. 11.
Fig. 11. Optical pump power response profile dependent on the electronic control of pump power.
Fig. 12.
Fig. 12. Noise measurements of the FOCR pulses dependent on the output wavelength. (a) The RIN spectra of the FOCR pulses versus the FOCR wavelength. (b) The SNR of FOCR dependent on the wavelength (red circles) and the corresponding output power (black squares).
Fig. 13.
Fig. 13. Noise measurements of the FOCR pulses after bandpass optical filters. (a) FOCR spectra with and without bandpass optical filters. The power of unfiltered FOCR is 1.3 mW. (b) The RIN spectra of FOCR measured with and without bandpass optical filters. (c) Spectrum of FOCR output (black dashed line) and SNR measured with bandpass filters at different spectral positions (red circles). The SNR of the spectrally unfiltered FOCR is 931.
Fig. 14.
Fig. 14. Noise measurements of the FOCR pulses dependent on the output power. (a) Noise spectra of the FOCR pulses versus output power at FOCR wavelength of 560 nm. (b) The SNR of FOCR dependent on the output power.

Tables (2)

Tables Icon

Table 1. Experimental Conditions of the Pump Pulses as Shown in Fig. 1(d)

Tables Icon

Table 2. Simulated Pulse Duration and Autocorrelation Corrected for Dispersive Effects in the Optical Elements Between the PCF and the Autocorrelator

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(r,t)=12πmdwAm(z,w)em(r,z,w)ei[wtBm(w,z)];Bm(z,w)=0zdzβm(w,z),
A(z,w)z=iwcn22πdw12[Aeff(z,w)]14A˜(z,w1)A˜*(z,W2)A˜(z,ww1+w2)eiB(w,z)[(1fR)+fRR(r,ww1)],
A˜(z,w)=A(z,w)eiB(w,z)[Aeff(z,w)]1/4.
β(w)β(w0)β1(w0)(ww0)=γP02;γ=2πn2λ0Aeff(w0),
w0wdw[β1(w)β1(w0)]=γP02.

Metrics