Abstract

In this work, a hybrid structure consisting of a multicomponent germanate glass microsphere containing bismuth as a gain medium is proposed and presented. The bismuth-doped germanate glass microspheres were fabricated from a glass fiber tip with no precipitation of the bismuth metal. Coupling with a fiber taper, the bismuth-doped microsphere single-mode laser was observed to lase at around 1305.8 nm using 808 nm excitation. The low threshold of absorbed pump power at 215 μW makes this microlaser appealing for various applications, including tunable lasers for a range of purposes in telecommunication, biomedical, and optical information processing.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Near infrared broadband emission of bismuth-doped aluminophosphate glass

Xian-geng Meng, Jian-rong Qiu, Ming-ying Peng, Dan-ping Chen, Quan-zhong Zhao, Xiong-wei Jiang, and Cong-shan Zhu
Opt. Express 13(5) 1628-1634 (2005)

Optical amplification near 1300 nm in bismuth-doped strontium germanate glass

Jinjun Ren, Yanbo Qiao, Congshan Zhu, Xiongwei Jiang, and Jianrong Qiu
J. Opt. Soc. Am. B 24(10) 2597-2600 (2007)

Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses

Linling Tan, Liping Wang, Mingying Peng, Shanhui Xu, and Qinyuan Zhang
Opt. Express 24(16) 18649-18654 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
    [Crossref]
  2. S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
    [Crossref]
  3. S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  4. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Tm-based fiber-laser system with more than 200  MW peak power,” Opt. Lett. 40, 9–12 (2015).
    [Crossref]
  5. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
    [Crossref]
  6. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325–3326 (2003).
    [Crossref]
  7. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
    [Crossref]
  8. Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
    [Crossref]
  9. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
    [Crossref]
  10. V. Sokolov, V. Plotnichenko, and E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
    [Crossref]
  11. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
    [Crossref]
  12. V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
    [Crossref]
  13. Y. Fujimoto, “Bismuth doped silica glass and fiber,” Rev. Laser Eng. 38, 869–875 (2010).
    [Crossref]
  14. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
    [Crossref]
  15. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
    [Crossref]
  16. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
    [Crossref]
  17. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
    [Crossref]
  18. M. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16, 21032–21038 (2008).
    [Crossref]
  19. S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
    [Crossref]
  20. E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1, e12 (2012).
    [Crossref]
  21. T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
    [Crossref]
  22. I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
    [Crossref]
  23. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  24. T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
    [Crossref]
  25. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  26. Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
    [Crossref]
  27. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
    [Crossref]
  28. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
    [Crossref]
  29. Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
    [Crossref]
  30. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express 13, 6892–6898 (2005).
    [Crossref]
  31. N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
    [Crossref]
  32. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
    [Crossref]
  33. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
    [Crossref]
  34. Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
    [Crossref]
  35. J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
    [Crossref]
  36. A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
    [Crossref]
  37. H. Hattori, Z. Li, D. Liu, I. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
    [Crossref]
  38. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
    [Crossref]

2016 (3)

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

2015 (1)

2014 (2)

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

2013 (1)

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

2012 (3)

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1, e12 (2012).
[Crossref]

2011 (2)

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

2010 (2)

Y. Fujimoto, “Bismuth doped silica glass and fiber,” Rev. Laser Eng. 38, 869–875 (2010).
[Crossref]

Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

2009 (2)

2008 (5)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[Crossref]

V. Sokolov, V. Plotnichenko, and E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
[Crossref]

M. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16, 21032–21038 (2008).
[Crossref]

2007 (3)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

2006 (3)

Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
[Crossref]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[Crossref]

2005 (5)

2004 (1)

T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[Crossref]

2003 (1)

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325–3326 (2003).
[Crossref]

2002 (1)

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

1998 (1)

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

1996 (1)

1993 (1)

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Ahmad, H.

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Babin, S.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Berseth, C.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Bi, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Bigot, L.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Binks, D.

Bouwmans, G.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Bufetov, I.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
[Crossref]

Caliman, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Chen, D.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express 13, 6892–6898 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
[Crossref]

Cho, B.

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

Chong, W.

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

Dianov, E.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1, e12 (2012).
[Crossref]

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
[Crossref]

V. Sokolov, V. Plotnichenko, and E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
[Crossref]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Dong, G.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

Dong, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Douay, M.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Dvoyrin, V.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Fang, Z.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Felten, J.

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Firstov, S.

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

Fujimoto, Y.

Y. Fujimoto, “Bismuth doped silica glass and fiber,” Rev. Laser Eng. 38, 869–875 (2010).
[Crossref]

Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
[Crossref]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325–3326 (2003).
[Crossref]

Gaida, C.

Gebhardt, M.

Glass, J.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Gorodetsky, M.

Guo, X.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Gur’yanov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

Harun, S.

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

Hattori, H.

He, J.

Hirao, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Hong, Z.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Hu, L.

Iakovlev, V.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Ilchenko, V.

Jackson, S.

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Jansen, F.

Jauregui, C.

Jha, A.

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

Jiang, X.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[Crossref]

Kablukov, S.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Kalita, M.

Kapon, E.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Khonthon, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Kippenberg, T.

T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

Le, V.

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Lerouge, A.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

Levi, A.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Li, C.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Li, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Li, Z.

Limpert, J.

Liu, D.

Liu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Lobach, I.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Logan, R.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Lou, J.

Lousteau, J.

Ma, Z.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Maimaiti, A.

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Mashinsky, V.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

McCall, S.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Melkumov, M.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Meng, X.

Mereuta, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Mermet, A.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

Mircea, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Miura, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Morimoto, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Nakatsuka, M.

Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
[Crossref]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325–3326 (2003).
[Crossref]

Nic Chormaic, S.

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

Nordine, P.

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

Norizan, S.

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

Noronen, T.

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

Ohishi, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Okhotnikov, O.

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

Pearton, S.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Peng, M.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express 13, 6892–6898 (2005).
[Crossref]

Peng, W.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Plotnichenko, V.

Podivilov, E.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Premaratne, M.

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Qiu, J.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express 13, 6892–6898 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
[Crossref]

Razdobreev, I.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

Ren, J.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

Richards, B.

Rudra, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Rukhlenko, I.

Sahu, J.

Savchenkov, A.

Seo, Y.

Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
[Crossref]

Sharafudeen, K.

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

Shen, Y.

Skvortsov, M.

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Slusher, R.

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

Sokolov, V.

Spillane, S.

T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Stutzki, F.

Su, L.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Suruceanu, G.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Suzuki, T.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Syrbu, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

Tong, L.

Truong, V.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

Tsang, Y.

Tünnermann, A.

Umnikov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Vahala, K.

T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Ward, J.

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

Weber, J.

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

Wu, Y.

Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

Xu, B.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Xu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Yang, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Yang, L.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

Yang, Q.

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

Ye, Z.

Yoo, S.

Yu, P.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Zeng, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Zhang, H.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Zhang, J.

Zhang, N.

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

Zhao, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Zhao, Q.

Zhao, Y.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

Zheng, J.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

Zheng, S.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

Zhou, S.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

Zhu, C.

Adv. Funct. Mater. (2)

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23, 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18, 1407–1413 (2008).
[Crossref]

Appl. Phys. Lett. (7)

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92, 041908 (2008).
[Crossref]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[Crossref]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325–3326 (2003).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007).
[Crossref]

T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[Crossref]

A. Levi, R. Slusher, S. McCall, J. Glass, S. Pearton, and R. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (2)

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17, 947–949 (2005).
[Crossref]

S. Norizan, W. Chong, S. Harun, and H. Ahmad, “O-band bismuth-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett. 23, 1860–1862 (2011).
[Crossref]

J. Am. Ceram. Soc. (2)

N. Zhang, K. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc. 95, 3842–3846 (2012).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 99, 856–859 (2016).
[Crossref]

J. Appl. Phys. (1)

Y. Wu, J. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

J. Mater. Chem. C (1)

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation,” J. Mater. Chem. C 2, 7830–7835 (2014).
[Crossref]

Laser Phys. (1)

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, J. Liu, and J. Xu, “Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system,” Laser Phys. 21, 901–905 (2011).
[Crossref]

Laser Phys. Lett. (1)

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
[Crossref]

Light Sci. Appl. (1)

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1, e12 (2012).
[Crossref]

Nat. Photonics (1)

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Nature (2)

J. Weber, J. Felten, B. Cho, and P. Nordine, “Glass fibres of pure and erbium-or neodymium-doped yttria-alumina compositions,” Nature 393, 769–771 (1998).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Opt. Commun. (1)

Y. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300  nm telecommunications window,” Opt. Commun. 266, 169–171 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Quantum Electron. (1)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083–1084 (2005).
[Crossref]

Rev. Laser Eng. (1)

Y. Fujimoto, “Bismuth doped silica glass and fiber,” Rev. Laser Eng. 38, 869–875 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

J. Ward, A. Maimaiti, V. Le, and S. Nic Chormaic, “Contributed review: optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Sci. Rep. (2)

T. Noronen, S. Firstov, E. Dianov, and O. Okhotnikov, “1700  nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref]

I. Lobach, S. Kablukov, M. Skvortsov, E. Podivilov, M. Melkumov, S. Babin, and E. Dianov, “Narrowband random lasing in a bismuth-doped active fiber,” Sci. Rep. 6, 30083 (2016).
[Crossref]

Solid State Commun. (1)

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140, 38–41 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Transmission spectra of xBi2O3-doped germanate glasses (x=1.0, 2.0, 3.0, and 4.0). The different absorption bands around 500 and 800 nm over the transmission spectra are marked by two green dashed elliptical circles. (b) Photoluminescence spectra of xBi2O3-doped germanate glasses under 808 nm excitation (x=0.0, 1.0, 2.0, 3.0, 3.5, and 4.0).
Fig. 2.
Fig. 2. (a) Microscope images of (a) Bi-doped germanate glass fiber and (b) microsphere. (c) XRD patterns of Bi-doped germanate glass, glass fibers and microspheres.
Fig. 3.
Fig. 3. Experimental setup for characterizing a Bi-doped microsphere laser. An 808 nm laser diode is used as the excitation source.
Fig. 4.
Fig. 4. (a) WGMs observed when light is coupled into doped microsphere via the fiber taper coupler. (b) Laser emission (red curve) from the Bi-doped microsphere when the absorbed pump power reaches 215 μW. As a reference, the fluorescence spectrum from the Bi-doped multi-component glass is also shown (blue curve).
Fig. 5.
Fig. 5. (a) Microsphere laser output power as a function of estimated absorbed pump power at 1305.8 nm. The straight red line is a linear fit to the experimental data. (b) Oscilloscope trace of the Bi-doped microsphere laser recorded as the pump is scanned in frequency. (c) Schematic of the experimental setup for the linewidth measurement of Bi laser emission.

Metrics