Abstract

A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to detect changes in the index of refraction of the medium under analysis. The normal incidence operation eases its integration with optical fibers. The geometry of the arrangement and the material selection are changed to optimize some performance parameters as sensitivity, figure of merit, field enhancement, and spectral width. This optimization takes into account the feasibility of the fabrication. The evaluated results of sensitivity (1020 nm/RIU) and figure of merit (614 RIU1) are competitive with those previously reported.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region

Lili Liu, Mei Wang, Lipeng Jiao, Ting Wu, Feng Xia, Meijie Liu, Weijin Kong, Lifeng Dong, and Maojin Yun
J. Opt. Soc. Am. B 36(4) 1108-1116 (2019)

Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection

Woo Kyung Jung, Nak-Hyeon Kim, and Kyung Min Byun
Appl. Opt. 51(20) 4722-4729 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref]
  2. G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
    [Crossref]
  3. R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
    [Crossref]
  4. C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
    [Crossref]
  5. D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 19, 581–586 (1994).
    [Crossref]
  6. B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
    [Crossref]
  7. A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
    [Crossref]
  8. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
    [Crossref]
  9. Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).
  10. W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
    [Crossref]
  11. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
    [Crossref]
  12. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis,” Proc. SPIE 5703, 61–70 (2005).
    [Crossref]
  13. T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
    [Crossref]
  14. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
    [Crossref]
  15. Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
    [Crossref]
  16. X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure,” Appl. Opt. 54, 1548–1554 (2015).
    [Crossref]
  17. K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007).
    [Crossref]
  18. D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
    [Crossref]
  19. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19, 787–813 (2011).
    [Crossref]
  20. A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
    [Crossref]
  21. T.-W. Lee and S. K. Gray, “Remote grating-assisted excitation of narrow-band surface plasmons,” Opt. Express 18, 23857–23864 (2010).
    [Crossref]
  22. M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
    [Crossref]
  23. V. V. Temnov, K. Nelson, G. Armelles, A. Cebollada, T. Thomay, A. Leitensorfer, and R. Bratschitsch, “Femtosecond surface plasmon interferometry,” Opt. Express 17, 8423–8432 (2009).
    [Crossref]
  24. F. Cheng, X. Yand, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185–3188 (2014).
    [Crossref]
  25. N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  26. S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
    [Crossref]
  27. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [Crossref]
  28. X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
    [Crossref]
  29. J. S. Mitchell and Y. Wu, “Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules,” in Biosensors, P. A. Serra, ed. (InTech, 2010), Chap. 9, pp. 151–168.
  30. N. K. Sharma, “Performances of different metals in optical fiber-based surface plasmon resonance sensor,” Pramana J. Phys. 78, 417–427 (2012).
    [Crossref]
  31. J. Alda and G. Boreman, Infrared Antennas and Resonant Structures (SPIE, 2017).
  32. A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).
  33. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  34. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  35. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984).
    [Crossref]
  36. H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
    [Crossref]
  37. S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
    [Crossref]
  38. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [Crossref]
  39. M. H. Elshorbagy and J. Alda, “Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings,” J. Photon. Energy 7, 017002 (2017).
    [Crossref]
  40. S. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  41. F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
    [Crossref]
  42. SCHOTT, “Optical glass data sheets 2015-07-22,” https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets//-july-2015-us.pdf/ .
  43. G. Beadie, M. Brindza, R. A. Flynn, A. Rosenberg, and J. S. Shirk, “Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4 to 1.6  μm,” Appl. Opt. 54, F139–F143 (2015).
    [Crossref]
  44. R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
    [Crossref]
  45. B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
    [Crossref]
  46. M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
    [Crossref]
  47. W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
    [Crossref]
  48. E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
    [Crossref]
  49. Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
    [Crossref]
  50. J. Maurya and Y. Prajapati, “A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene,” Opt. Quantum Electron. 48, 1–12 (2016).
    [Crossref]
  51. A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
    [Crossref]
  52. L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
    [Crossref]

2017 (1)

M. H. Elshorbagy and J. Alda, “Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings,” J. Photon. Energy 7, 017002 (2017).
[Crossref]

2016 (8)

B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

J. Maurya and Y. Prajapati, “A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene,” Opt. Quantum Electron. 48, 1–12 (2016).
[Crossref]

A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).

2015 (5)

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure,” Appl. Opt. 54, 1548–1554 (2015).
[Crossref]

G. Beadie, M. Brindza, R. A. Flynn, A. Rosenberg, and J. S. Shirk, “Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4 to 1.6  μm,” Appl. Opt. 54, F139–F143 (2015).
[Crossref]

2014 (2)

F. Cheng, X. Yand, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185–3188 (2014).
[Crossref]

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

2013 (1)

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

2012 (3)

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
[Crossref]

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

N. K. Sharma, “Performances of different metals in optical fiber-based surface plasmon resonance sensor,” Pramana J. Phys. 78, 417–427 (2012).
[Crossref]

2011 (5)

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
[Crossref]

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19, 787–813 (2011).
[Crossref]

2010 (3)

T.-W. Lee and S. K. Gray, “Remote grating-assisted excitation of narrow-band surface plasmons,” Opt. Express 18, 23857–23864 (2010).
[Crossref]

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

2009 (3)

2008 (2)

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
[Crossref]

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

2007 (1)

2005 (3)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis,” Proc. SPIE 5703, 61–70 (2005).
[Crossref]

2003 (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
[Crossref]

2000 (1)

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

1997 (1)

S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
[Crossref]

1994 (1)

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 19, 581–586 (1994).
[Crossref]

1993 (1)

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[Crossref]

1984 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1965 (1)

Ahmadi, M. T.

B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
[Crossref]

Aili, D.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Alda, J.

M. H. Elshorbagy and J. Alda, “Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings,” J. Photon. Energy 7, 017002 (2017).
[Crossref]

J. Alda and G. Boreman, Infrared Antennas and Resonant Structures (SPIE, 2017).

Armelles, G.

Arwin, H.

G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
[Crossref]

Baev, A.

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

Beadie, G.

Beck, U.

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

Boey, F.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Boreman, G.

J. Alda and G. Boreman, Infrared Antennas and Resonant Structures (SPIE, 2017).

Bouchon, P.

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

Bratschitsch, R.

Brindza, M.

Bruzas, I.

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

Byun, K. M.

Cabrini, S.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Canva, M.

Cebollada, A.

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Chang-Hasnain, C.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Chao, C.-T. C.

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Chau, Y.-F. C.

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Chen, C.

Cheng, F.

Cheng, Q.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Cheng, W.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Chiang, H.-P.

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Clerc, D.

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 19, 581–586 (1994).
[Crossref]

Cook, C. J.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

Coquet, P.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Cras, J. J.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

Cuadrado, A.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).

Dai, X.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Dhawan, A.

Dhuey, S.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Ding, S.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Ding, X.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Dinh, X.-Q.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Dodge, M. J.

Dostalek, J.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
[Crossref]

Durose, K.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Elshorbagy, M. H.

M. H. Elshorbagy and J. Alda, “Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings,” J. Photon. Energy 7, 017002 (2017).
[Crossref]

Enander, K.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Ermini, M. L.

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

Fan, D.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Flynn, R. A.

Fujihara, S.

S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
[Crossref]

Gao, J.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Golden, J. P.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

Gray, S. K.

Greve, J.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[Crossref]

Guo, J.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Gupta, V.

A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
[Crossref]

Haïdar, R.

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

Hazzard, J. W.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

He, J.

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

He, S.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Heideman, R.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[Crossref]

Henstchel, M.

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Hertwig, A.

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

Hoffman, K. E.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

Homola, J.

B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Hong, L.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Huang, C.-P.

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

Huang, D.-W.

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

Huang, Y.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Hutchings, K.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Ismail, R.

B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
[Crossref]

Jablonku, J.

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

Jansson, R.

G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
[Crossref]

Jiang, L.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juste, J. P.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Kemnitz, E.

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

Kim, D.

Kim, S. J.

Kimura, T.

S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
[Crossref]

Knoll, W.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
[Crossref]

Kooyman, R.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[Crossref]

Krüger, H.

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

Lane, D.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Law, W.-C.

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

Lechuga, L. M.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Lee, T.-W.

Leitensorfer, A.

Li, S.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Li, X.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
[Crossref]

Liedberg, B.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Ligler, F. S.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

Lim, C. M.

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Lin, Z.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

Liu, F.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, Y.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Liz-Marzán, L. M.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Lukosz, W.

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 19, 581–586 (1994).
[Crossref]

Ma, Y.-F.

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

Maier, S.

S. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

Main, L.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

Malitson, I.

Martinsson, E.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Maurya, J.

J. Maurya and Y. Prajapati, “A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene,” Opt. Quantum Electron. 48, 1–12 (2016).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Meshginqalam, B.

B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
[Crossref]

Mitchell, J. S.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

J. S. Mitchell and Y. Wu, “Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules,” in Biosensors, P. A. Serra, ed. (InTech, 2010), Chap. 9, pp. 151–168.

Nelson, K.

Ni, W.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Olynick, D.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Otte, M. A.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Ouyang, Q.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Padmore, H.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Paliwal, A.

A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
[Crossref]

Pardo, F.

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

Pelouard, J.-L.

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

Piliarik, M.

Polyakov, A.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Prajapati, Y.

J. Maurya and Y. Prajapati, “A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene,” Opt. Quantum Electron. 48, 1–12 (2016).
[Crossref]

Prakash, A.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Prasad, P. N.

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

Qian, J.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Qu, J.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Roncallo, S.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Rosenberg, A.

Rowe-Taitt, C. A.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

Sabatyan, A.

B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
[Crossref]

Sagle, L.

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Schuck, P.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Sepulveda, B.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Serna, R.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).

Seymour-Pierce, A.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Shahjamali, M. M.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Sharma, N. K.

N. K. Sharma, “Performances of different metals in optical fiber-based surface plasmon resonance sensor,” Pramana J. Phys. 78, 417–427 (2012).
[Crossref]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Shirk, J. S.

Shu, X.

Shuler, M. L.

Spackova, B.

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

Špacková, B. M.

B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Springer, T.

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

Su, W.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
[Crossref]

Sun, M.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Sun, T.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

Sun, X.

Sung, M.-J.

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

Syu, J.-Y.

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Tada, M.

S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
[Crossref]

Temnov, V. V.

Thomay, T.

Thompson, K.

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Tomar, M.

A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
[Crossref]

Toudert, J.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).

Treharne, R.

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

Tripathi, R.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Unser, S.

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Verma, A.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Vo-Dinh, T.

Wang, G.

G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
[Crossref]

Wang, Y.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Wrobel, P.

B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Wu, L.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Wu, Y.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

J. S. Mitchell and Y. Wu, “Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules,” in Biosensors, P. A. Serra, ed. (InTech, 2010), Chap. 9, pp. 151–168.

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Xiang, Y.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Xu, G.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Xue, C.

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

Yan, Y.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Yand, X.

Yong, K.-T.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

Yoon, S. J.

Zeng, S.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

Zhang, Y.

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Zheng, G.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
[Crossref]

Zhu, L.

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

ACS Nano (2)

W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5, 4858–4864 (2011).
[Crossref]

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4, 349–357 (2009).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Anal. Biochem. (1)

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[Crossref]

Anal. Chem. (2)

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83, 6202–6207 (2011).
[Crossref]

T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86, 10350–10356 (2014).
[Crossref]

Anal. Chim. Acta (1)

X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, and S. Ding, “Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification,” Anal. Chim. Acta 874, 59–65 (2015).
[Crossref]

Appl. Opt. (4)

Biosens. Bioelectron. (1)

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron. 15, 579–589 (2000).
[Crossref]

IEEE Photon. J. (2)

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photon. J. 8, 1–11 (2016).

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films,” IEEE Photon. J. 8, 1–8 (2016).

IEEE Sens. J. (1)

G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sens. J. 3, 739–743 (2003).
[Crossref]

J. Biomed. Opt. (1)

A. Paliwal, M. Tomar, and V. Gupta, “Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix,” J. Biomed. Opt. 21, 087006 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Photon. Energy (1)

M. H. Elshorbagy and J. Alda, “Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings,” J. Photon. Energy 7, 017002 (2017).
[Crossref]

J. Phys. (1)

R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, and D. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. 286, 012038 (2011).
[Crossref]

J. Phys. Chem. C (1)

E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, and B. Liedberg, “Local refractive index sensing based on edge gold-coated silver nanoprisms,” J. Phys. Chem. C 117, 23148–23154 (2013).
[Crossref]

J. Phys. D (1)

Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, and C. M. Lim, “Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications,” J. Phys. D 50, 045105 (2016).
[Crossref]

Nano Lett. (2)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Henstchel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Opt. Commun. (2)

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285, 4603–4607 (2012).
[Crossref]

Opt. Eng. (1)

D.-W. Huang, Y.-F. Ma, M.-J. Sung, and C.-P. Huang, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Opt. Eng. 49, 054403 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Maurya and Y. Prajapati, “A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene,” Opt. Quantum Electron. 48, 1–12 (2016).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref]

Pramana J. Phys. (1)

N. K. Sharma, “Performances of different metals in optical fiber-based surface plasmon resonance sensor,” Pramana J. Phys. 78, 417–427 (2012).
[Crossref]

Proc. IEEE (1)

B. M. Špačková, P. Wrobel, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Proc. SPIE (2)

M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, and C. Chang-Hasnain, “Integrated plasmonic refractive index sensor based on grating/metal film resonant structure,” Proc. SPIE 9757, 97570Q (2016).
[Crossref]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis,” Proc. SPIE 5703, 61–70 (2005).
[Crossref]

Sci. Rep. (2)

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref]

A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, and H. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2, 933 (2012).
[Crossref]

Sens. Actuators B (2)

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[Crossref]

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 19, 581–586 (1994).
[Crossref]

Sensors (1)

S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized surface plasmon resonance biosensing: current challenges and approaches,” Sensors 15, 15684–15716 (2015).
[Crossref]

Thin Solid Films (2)

H. Krüger, E. Kemnitz, A. Hertwig, and U. Beck, “Transparent MgF2-films by sol-gel coating: synthesis and optical properties,” Thin Solid Films 516, 4175–4177 (2008).
[Crossref]

S. Fujihara, M. Tada, and T. Kimura, “Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method,” Thin Solid Films 304, 252–255 (1997).
[Crossref]

Other (6)

S. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

J. Alda and G. Boreman, Infrared Antennas and Resonant Structures (SPIE, 2017).

J. S. Mitchell and Y. Wu, “Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules,” in Biosensors, P. A. Serra, ed. (InTech, 2010), Chap. 9, pp. 151–168.

B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, “Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor,” Plasmonics (2016), doi: 10.1007/s11468-016-0472-2.
[Crossref]

SCHOTT, “Optical glass data sheets 2015-07-22,” https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets//-july-2015-us.pdf/ .

L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor,” Plasmonics (2017), doi: 10.1007/s11468-017-0511-7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Classic Kretschmann configuration with a glass prism coated with a gold thin film in contact with the analyte. The SPR is generated at the metal/analyte interface. (b) 2D cross section of the unit cell of an array of long-wire slot antennas (nanoslits) that generates SPR interacting with the analyte. The system is deposited on a glass substrate as a nanostructure metal layer, M1, a dielectric buffer layer, BL, and a final second metallic layer, M2. The SPR happens at the M2/analyte interface.
Fig. 2.
Fig. 2. (a) Spectral response of the device showing three reflectance dips: SPRM2 appears at the M2/analyte interface, SPRM1 appears at the substrate/M1 interface and is not accessible in this design, and a guided mode that corresponds to light trapped within the buffer layer. (b) Magnetic field maps at the wavelengths where the three minima of the reflectance occur.
Fig. 3.
Fig. 3. Left column shows the spectral reflectance for various cases where the thicknesses, tBL, tM1, and tM2, and the slit width, wG, change (a, c, e, and g respectively). The right column plots in a double-axis representations of the FE (black dots, left axis) and FWHM (blue solid line, right axis) performance parameter functions of the same geometrical dimensions in the same order (b, d, f, and h). The yellow arrows indicate the selected optimum value.
Fig. 4.
Fig. 4. (a) Spectral reflectances for three values of the period, P. It shows the overall shift caused by the variation of the period. (b) Amplitude of the magnetic field along the structure at the resonance wavelength.
Fig. 5.
Fig. 5. Effect of substrate material on the spectral response. This response shifts when changing the index of refraction of the analyte, na, but the shape of the spectral reflectance remains the same. The solid lines are for na=1.33 and the dashed lines are for na=1.34.
Fig. 6.
Fig. 6. (a) Spectral reflectivity for four different choices of the BL material (MgF2, SiO2, PMMA, and AZO). (b) Dependences of FE and FWHM functions of the index of refraction of the possible choices for the material of the buffer layer. The dashed vertical lines correspond to the index of refraction of the buffer layer material.
Fig. 7.
Fig. 7. (a) Effect of different metal combinations for M1 and M2 on the spectral response. We have considered Au, Ag, and Al. (b) Effect of the double-metal layers for M2 on the spectral response. The numbers represent the thicknesses of the two metals Ag–Au in the bimetallic layer. The arrows indicate the preferred choice.
Fig. 8.
Fig. 8. Effect of the refractive index of the analyte on the SPR spectral position: (a) for M2 made of a single layer of Ag and (b) for M2 made of a double-metal layer Ag/Au (25/5 nm). (c) Sensitivity (black dotted line, left axis) and (d) FOM (blue solid line, right axis) corresponding to both options for the M2 layer (single metal, Ag, and double metal, Ag–Au, respectively).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2πλ0npsinθr=Re{βSP}=2πλ0nefSP,
sinθSP=εM2(λ0)εaεs[εM2(λ0)+εa],
sinθSP=mλ0Pεs,
mλ0P=εM2(λ0)εa[εM2(λ0)+εa].
SB,θ=ΔθΔn.
SB,λ=ΔλΔn,
FOM=SBFWHM.
H=Aey/d+B

Metrics