Abstract

We demonstrate a novel high-accuracy post-fabrication trimming technique to fine-tune the phase of integrated Mach–Zehnder interferometers, enabling permanent correction of typical fabrication-based phase errors. The effective index change of the optical mode is 0.19 in our measurement, which is approximately an order of magnitude improvement compared to previous work with similar excess optical loss. Our measurement results suggest that a phase accuracy of 0.078 rad was achievable with active feedback control.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of surface trimmed silicon-on-insulator waveguide with adiabatic spot-size converters

Sujith Chandran, Meenatchi Sundaram, Sreevatsa Kurudi, and Bijoy Krishna Das
Appl. Opt. 56(6) 1708-1716 (2017)

Hydrogenated amorphous silicon photonic device trimming by UV-irradiation

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller
Opt. Express 22(10) 12122-12132 (2014)

Localized in situ cladding annealing for post-fabrication trimming of silicon photonic integrated circuits

Steven Spector, Jeffrey M. Knecht, and Paul W. Juodawlkis
Opt. Express 24(6) 5996-6003 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  2. Z. Yong, S. Shopov, J. C. Mikkelsen, R. Mallard, J. C. C. Mak, S. P. Voinigescu, and J. K. S. Poon, “Flip-chip integrated silicon Mach–Zehnder modulator with a 28  nm fully depleted silicon-on-insulator CMOS driver,” Opt. Express 25, 6112–6121 (2017).
    [Crossref]
  3. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermos-optics Mach–Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref]
  4. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
    [Crossref]
  5. D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
    [Crossref]
  6. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16, 3738–3743 (2008).
    [Crossref]
  7. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012).
    [Crossref]
  8. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
    [Crossref]
  9. A. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
    [Crossref]
  10. D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
    [Crossref]
  11. J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19, 11969–11976 (2011).
    [Crossref]
  12. G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
    [Crossref]
  13. R. Topley, G. Martinez-Jimenez, L. O’Faolain, N. Healy, S. Mailis, D. J. Thomson, F. Y. Gardes, A. C. Peacock, D. N. R. Payne, G. Z. Mashanovich, and G. T. Reed, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightwave Technol. 32, 2248–2253 (2014).
    [Crossref]
  14. K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
    [Crossref]
  15. P. D. Townsend, “Optical effects of ion implantation,” Rep. Prog. Phys. 50, 501–558 (1987).
    [Crossref]
  16. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
    [Crossref]
  17. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
    [Crossref]
  18. X. Chen, M. Milosevic, D. Thomson, A. Khokhar, Y. Franz, A. Runge, S. Mailis, A. Peacock, and G. Reed, “Dataset for: Post-fabrication phase trimming of Mach-Zehnder interferometers by laser annealing of germanium implanted waveguides,” Univ. Southampton Institutional Repository (2017) [retrieved 26 September 2017], https://doi.org/10.5258/SOTON/D0167 .

2017 (2)

2014 (2)

R. Topley, G. Martinez-Jimenez, L. O’Faolain, N. Healy, S. Mailis, D. J. Thomson, F. Y. Gardes, A. C. Peacock, D. N. R. Payne, G. Z. Mashanovich, and G. T. Reed, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightwave Technol. 32, 2248–2253 (2014).
[Crossref]

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2009 (1)

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
[Crossref]

2008 (1)

2006 (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

2004 (1)

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

2002 (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

1987 (1)

P. D. Townsend, “Optical effects of ion implantation,” Rep. Prog. Phys. 50, 501–558 (1987).
[Crossref]

Ackert, J. J.

Agarwal, A.

Bachman, D.

Baets, R.

Canciamilla, A. A.

Cheben, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Chen, X.

G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
[Crossref]

Chen, Z.

Chrostowski, L.

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Delage, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Densmore, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

DeRose, C.

Doylend, J. K.

J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19, 11969–11976 (2011).
[Crossref]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

Eich, M.

Fedosejevs, R.

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

Gardes, F. Y.

R. Topley, G. Martinez-Jimenez, L. O’Faolain, N. Healy, S. Mailis, D. J. Thomson, F. Y. Gardes, A. C. Peacock, D. N. R. Payne, G. Z. Mashanovich, and G. T. Reed, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightwave Technol. 32, 2248–2253 (2014).
[Crossref]

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Goleman, P. G.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

Goll, B.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Grillanda, S.

Hara, A.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Healy, N.

Hu, Y.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Janz, S.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Jen, A. K.-Y.

Jessop, P. E.

Katoh, Y.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Kimerling, L. C.

Kitahara, K.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Knights, A. P.

J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19, 11969–11976 (2011).
[Crossref]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

Knoll, D.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lapointe, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lischke, S.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Logan, D. F.

Luo, J.

Mailis, S.

Mak, J. C. C.

Mallard, R.

Martinez-Jimenez, G.

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

Melloni, A.

Mikkelsen, J. C.

Milosevic, M. M.

G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
[Crossref]

Morichetti, F.

Nielson, G. N.

O’Faolain, L.

Ohashi, Y.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
[Crossref]

Payne, D. N. R.

Peacock, A. C.

Petrov, A. Y.

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Poon, J. K. S.

Porte, H.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Prorok, S.

Reed, G. T.

G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
[Crossref]

R. Topley, G. Martinez-Jimenez, L. O’Faolain, N. Healy, S. Mailis, D. J. Thomson, F. Y. Gardes, A. C. Peacock, D. N. R. Payne, G. Z. Mashanovich, and G. T. Reed, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightwave Technol. 32, 2248–2253 (2014).
[Crossref]

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Sasaki, N.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Schmid, J. H.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Schrauwen, J.

Shopov, S.

Singh, V.

Sorel, M.

Sun, J.

Thomson, D. J.

G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
[Crossref]

R. Topley, G. Martinez-Jimenez, L. O’Faolain, N. Healy, S. Mailis, D. J. Thomson, F. Y. Gardes, A. C. Peacock, D. N. R. Payne, G. Z. Mashanovich, and G. T. Reed, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightwave Technol. 32, 2248–2253 (2014).
[Crossref]

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Topley, R.

Townsend, P. D.

P. D. Townsend, “Optical effects of ion implantation,” Rep. Prog. Phys. 50, 501–558 (1987).
[Crossref]

Trotter, D. C.

Tsui, Y. Y.

Vafaei, R.

Van, V.

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Van Thourhout, D.

Velha, P.

Voinigescu, S. P.

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Watts, M. R.

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Yong, Z.

Yoo, S. J. B.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
[Crossref]

Young, R. W.

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
[Crossref]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

Zimmermann, H.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Zimmermann, L.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21, 1175–1177 (2009).
[Crossref]

J. Appl. Phys. (3)

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Goleman, “Optical attenuation in defect-engineered silicon rib waveguide,” J. Appl. Phys. 99, 073101 (2006).
[Crossref]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92, 649–653 (2002).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier depletion modulator with 10  Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photon. Rev. 8, 180–187 (2014).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

G. T. Reed, M. M. Milosevic, X. Chen, and D. J. Thomson, “Trimming of ring resonators via ion implantation in silicon,” Proc. SPIE 10242, 102420Q (2017).
[Crossref]

Rep. Prog. Phys. (1)

P. D. Townsend, “Optical effects of ion implantation,” Rep. Prog. Phys. 50, 501–558 (1987).
[Crossref]

Other (1)

X. Chen, M. Milosevic, D. Thomson, A. Khokhar, Y. Franz, A. Runge, S. Mailis, A. Peacock, and G. Reed, “Dataset for: Post-fabrication phase trimming of Mach-Zehnder interferometers by laser annealing of germanium implanted waveguides,” Univ. Southampton Institutional Repository (2017) [retrieved 26 September 2017], https://doi.org/10.5258/SOTON/D0167 .

Supplementary Material (1)

NameDescription
» Dataset 1       Phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguides.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the MZI with the Ge implanted waveguides in both arms and the localized annealing process using a scanning laser.

Fig. 2.
Fig. 2.

Optical microscope image of the Ge implanted waveguides on both arms of the MZI.

Fig. 3.
Fig. 3.

Experimental setup for laser annealing (PBS, polarization beam splitter; BS, pellicle beam splitter; MO, microscope objective).

Fig. 4.
Fig. 4.

Measured results (normalized optical transmissions) of the output ports of the (a) MZI device I and (b) MZI device II while changing the annealing length of the implanted waveguide. Calculated results were also fitted and plotted correspondingly. The 10× objective lens was used to anneal these samples.

Fig. 5.
Fig. 5.

Measured results (normalized optical transmissions) of the output ports of the (a) MZI device III and (b) MZI device IV while changing the annealing length of the implanted waveguide. Calculated results were also fitted and plotted correspondingly. The 20× objective lens was used to achieve better position accuracy for laser annealing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Port1:T1=0.5×Eo2[1+sin(Δϕ)],
Port2:T2=0.5×Eo2[1sin(Δϕ)],
Δϕ=ϕo+C×ΔL,
neff=C·λ/(2π)=0.19.

Metrics