Abstract

An ultrasensitive metamaterial sensor based on double-slot vertical split ring resonators (DVSRRs) is designed and numerically calculated in the terahertz frequency. This DVSRR design produces a fundament LC resonance with a quality factor of about 20 when the incidence magnetic field component normal to the DVSRR array. The resonant characteristics and sensing performance of the DVSRR array design are systematically analyzed employing a contrast method among three similar vertical split ring resonator (SRRs) structures. The research results show that the elimination of bianisotropy, induced by the structural symmetry of the DVSRR design, helps to achieve LC resonance of a high quality factor. Lifting the SRRs up from the substrate sharply reduces the dielectric loss introduced by the substrate. All these factors jointly result in superior sensitivity of the DVSRR to the attributes of analytes. The maximum refractive index sensitivity is 788 GHz/RIU or 1.04×105  nm/RIU. Also, the DVSRR sensor maintains its superior sensing performance for fabrication tolerance ranging from 4% to 4% and wide range incidence angles up to 50° under both TE and TM illuminations.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations

John F. O’Hara, Ranjan Singh, Igal Brener, Evgenya Smirnova, Jiaguang Han, Antoinette J. Taylor, and Weili Zhang
Opt. Express 16(3) 1786-1795 (2008)

Low-cost metamaterial-on-paper chemical sensor

Aydin Sadeqi, Hojatollah Rezaei Nejad, and Sameer Sonkusale
Opt. Express 25(14) 16092-16100 (2017)

Modulating and tuning the response of metamaterials at the unit cell level

Aloyse Degiron, Jack J. Mock, and David R. Smith
Opt. Express 15(3) 1115-1127 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  3. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  4. R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
    [Crossref]
  5. Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
    [Crossref]
  6. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
    [Crossref]
  7. S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  9. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
    [Crossref]
  10. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref]
  11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
    [Crossref]
  12. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
    [Crossref]
  13. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  14. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
    [Crossref]
  15. K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
    [Crossref]
  16. P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
    [Crossref]
  17. K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
    [Crossref]
  18. P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
    [Crossref]
  19. P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
    [Crossref]
  20. D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
    [Crossref]
  21. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
    [Crossref]
  22. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
    [Crossref]
  23. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
    [Crossref]
  24. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
    [Crossref]
  25. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  26. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
    [Crossref]
  27. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
    [Crossref]
  28. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  29. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
    [Crossref]
  30. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
    [Crossref]
  31. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
    [Crossref]
  32. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
    [Crossref]
  33. I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 4700405 (2017).
    [Crossref]
  34. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
    [Crossref]
  35. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
    [Crossref]

2017 (2)

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 4700405 (2017).
[Crossref]

2015 (3)

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

2014 (4)

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

2013 (1)

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

2012 (2)

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
[Crossref]

2011 (2)

2010 (2)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

2009 (1)

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

2008 (4)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

2007 (2)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

2005 (2)

2004 (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

2003 (1)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

2002 (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

Ahn, Y. H.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Al-Naib, I.

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 4700405 (2017).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Averitt, R. D.

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Azad, A. K.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Bettiol, A. A.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

Cao, W.

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

Chen, C. J.

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

Chen, S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
[Crossref]

Chen, W. T.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[Crossref]

Chen, Y. H.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

Dmitriev, A.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Dong, Z. G.

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Economou, E. N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Fan, K.

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Gu, J.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Gundogdu, T. F.

Guo, G.-Y.

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Hai, P. C.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Han, J.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

Hong, J. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Hsiao, C. T.

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[Crossref]

Hsu, W. L.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Hsu, W.-L.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

Hu, X.

Huang, H. L.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Huang, Y. W.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Huang, Y.-W.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Jokerst, N. M.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Kafesaki, M.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Käll, M.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Katsarakis, N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Kim, H. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Koch, M.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Konstantinidis, G.

Koschny, T.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Kostopoulos, A.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Lee, S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
[Crossref]

Li, Y.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

Liang, D.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

Liao, C. Y.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Liu, A. Q.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

Liu, H.

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Marqués, R.

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Martel, J.

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Medina, F.

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Mesa, F.

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

Ouyang, C.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Padilla, W. J.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Palit, S.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Park, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

Penciu, R. S.

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Singh, L.

Singh, R.

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Soukoulis, C. M.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

Strikwerda, A. C.

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Sun, G.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
[Crossref]

Sun, S.

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

Tao, H.

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

Tian, Z.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

Tsai, D. P.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Wang, M.

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Wu, P. C.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[Crossref]

Xu, N.

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

Yang, K. Y.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

Yang, K.-Y.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Youngs, I. I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

Zhang, H.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

Zhang, W.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, “Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling,” Opt. Express 23, 29222–29230 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

Zhang, X.

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19, 12619–12627 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Zheludev, N. I.

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[Crossref]

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Zhou, L.

Zhu, J.

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

Zhu, S. N.

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

Appl. Phys. Lett. (8)

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, P. C. Hai, and D. P. Tsai, “Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 4700405 (2017).
[Crossref]

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic analog of electromagnetically induced transparency in stereo metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23, 4700907 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Nano Lett. (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Nanophotonics (1)

P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–138 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87, 161104 (2013).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Phys. Rev. E (2)

Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E 72, 016607 (2005).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Phys. Rev. Lett. (5)

R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref]

Sci. Rep. (2)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref]

P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5, 9726 (2015).
[Crossref]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Sensors (1)

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12, 2742–2765 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

3D schematic drawing of the proposed metamaterial sensor and a single enlarged unit cell with its geometrical dimensions. The inset shows the polarization of the EM wave illumination. The electric field component is vertical to the gap of the DVSRRs. The magnetic field is normal to the DVSRR. The EM wave illuminates from the top perpendicularly. The geometric parameters of a single DVSRR unit cell are a=50  μm, b=12  μm, t=1  μm, h=30  μm, r=6  μm, and g=2  μm. The period of the square lattice is p=70  μm.

Fig. 2.
Fig. 2.

Comparison of the transmission spectra of three different VSRRs that share the same dimensions, except for the positions and number of gaps. The TVSRR and BVSRR display the VSRRs with one slot in the top or bottom metal plate, respectively.

Fig. 3.
Fig. 3.

Comparison of the numerically calculated distributions of the three VSRR structures at resonant frequencies, namely 0.9853, 0.7305, and 1.5102 THz for TVSRR, BVSRR, and DVSRR respectively. (a), (d), and (g) illustrate the surface current distributions for the three VSRRs. The black arrows denote the directions of surface electric current. (b), (e), and (h) show the magnetic energy density distributions. The electric energy density distributions are also shown in (c), (f), and (i). The electric energy density in the lower gap of the DVSRR is enlarged and demonstrated in the red dotted line box in the inset of (i).

Fig. 4.
Fig. 4.

(a) 3D sketch diagram of the sensing configuration including the DVSRR’s array sensor and analyte. The sensing performance based on the thicknesses and RIs of the analyte are shown in the following subgraphs. (b) The transmission spectra of the DVSRR with and without analyte overlaid on the sensor. Analytes with the different thicknesses (l=27  μm) and constant n=1.6 are used in the numerical calculations of (b). To observe more clearly the sensing evolution, a break for the coordinate values in the horizontal axis has been introduced. (d) The fitting function using the data from (b) between the FS of the resonant dip and analyte thickness are shown. (c) Different transmission spectra are induced by the increasing RI (n=11.9) and constant l=6  μm of the analyte. (e) The exponential fitting curve for the data shown in (c) are displayed as the black curve, which can be expressed as FS=0.924642.326035*exp(0.96198*n) with R2=0.99992. The RI sensitivity of the DVSRR is also displayed as the blue curve in (e).

Fig. 5.
Fig. 5.

Comparative plots of (a) thickness sensing with fixed RI of n=1.6 and (b) RI sensing with constant thickness l=6  μm among the three structures: TVSRR, BVSRR, and DVSRR. A break is added in the y axis of (a) to manifest the values of FS for different VSRRs. (c) The bar plot shows the proportion of FS for n=1.12 induced by the analyte filling within the two gaps of DVSRR.

Fig. 6.
Fig. 6.

(a) 3D schematic drawing of the transmission spectral comparison for various DVSRR structures with fabrication tolerance ranging from 4% to 4%. Fabrication toleration is supposedly induced by inaccuracy in the fabrication process, which is calculated as a common coefficient of all the structural dimensions of the DVSRR. The sign “±” represents enlarging or shrinking all the structural dimensions of the DVSRR. (b) The Q-factor of the resonance of the DVSRR is shown as a function of fabrication tolerance (blue curve). The black curve shows the FS of its resonance dip induced by the analyte with n=1.6 and thickness l=6  μm versus fabrication tolerance.

Fig. 7.
Fig. 7.

Transmission spectral comparison for (a) TM and (b) TE incidence radiation with increasing incidence angles with a step of 10°. The polarizations of the two incidence radiations are shown as the insets in (a) and (b).

Fig. 8.
Fig. 8.

3D bar plots shows the evolution of the sensing performance of the DVSRR for a wide range of incidence angles (0°–50°) and the increasing RI (1.2–2) with fixed thickness l=6  μm under (a) TM and (b) TE incidence radiation. (c) The numerically calculated results of the FS induced by the analyte with n=1.6 and l=6  μm are shown as a function of the incidence angles for the TM and TE illumination, selected as examples to illustrate that the sensing performance of the DVSRR is incidence-angle-insensitive in the range of 0°–50°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δf=f0f=d2πLA*1ϵeff*[111+α(ϵanalyte1)/ϵeff].