Abstract

Coupling efficiency between the localized surface plasmons (LSPs) of metal nanoparticles (NPs) and incident light dominates the sensitivities of plasmon-based sensing spectroscopies and imaging techniques, e.g., surface-enhanced Raman scattering (SERS) spectroscopy. Many endogenous features of metal NPs (e.g., size, shape, aggregation form, etc.) that have strong impacts on their LSPs have been discussed in detail in previous studies. Here, the polarization-tuned electromagnetic (EM) field that facilitates the LSP coupling is fully discussed. Numerical analyses on waveguide-based evanescent fields (WEFs) coupled with the LSPs of dispersed silver nanospheres and silver nano-hemispheres are presented and the applicability of the WEF-LSPs to plasmon-enhanced spectroscopy is discussed. Compared with LSPs under direct light excitation that only provide 3–4 times enhancement of the incidence field, the WEF-LSPs can amplify the electric field intensity about 30–90 times (equaling the enhancement factor of 106108 in SERS intensity), which is comparable to the EM amplification of the SERS “hot spot” effect. Importantly, the strongest region of EM enhancement around silver nanospheres can be modulated from the gap region to the side surface simply by switching the incident polarization from TM to TE, which widely extends its sensing applications in surface analysis of monolayer of molecule and macromolecule detections. This technique provides us a unique way to achieve remarkable signal gains in many plasmon-enhanced spectroscopic systems in which LSPs are involved.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors

Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng
Opt. Express 19(12) 11441-11450 (2011)

Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS

Luping Du, Xuejin Zhang, Ting Mei, and Xiaocong Yuan
Opt. Express 18(3) 1959-1965 (2010)

Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays

Chen-Han Huang, Hsing-Ying Lin, Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng
Opt. Express 18(26) 27891-27899 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  2. P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
    [Crossref]
  3. P. Lee and D. Meisal, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [Crossref]
  4. O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
    [Crossref]
  5. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
    [Crossref]
  6. C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
    [Crossref]
  7. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  8. Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
    [Crossref]
  9. W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
    [Crossref]
  10. B. Pettinger, “Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs,” J. Chem. Phys. 85, 7442–7451 (1986).
    [Crossref]
  11. T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
    [Crossref]
  12. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
    [Crossref]
  13. Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
    [Crossref]
  14. D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
    [Crossref]
  15. K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
    [Crossref]
  16. M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
    [Crossref]
  17. B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
    [Crossref]
  18. S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
    [Crossref]
  19. C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
    [Crossref]
  20. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
    [Crossref]
  21. H. Masuda and M. M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35, L126–L129 (1996).
    [Crossref]
  22. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
    [Crossref]
  23. L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
    [Crossref]
  24. O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
    [Crossref]
  25. T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
    [Crossref]
  26. H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
    [Crossref]
  27. Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
    [Crossref]
  28. Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
    [Crossref]
  29. M. Futamata, P. Borthen, J. Thomassen, D. Schumacher, and A. Otto, “Applications of an ATR method in Raman spectroscopy,” Appl. Spectrosc. 48, 252–260 (1994).
    [Crossref]
  30. S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
    [Crossref]
  31. J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
    [Crossref]

2015 (2)

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

2014 (1)

D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
[Crossref]

2013 (3)

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

2012 (4)

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
[Crossref]

M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
[Crossref]

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

2011 (4)

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

2010 (2)

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

2008 (3)

Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

2005 (1)

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

2004 (1)

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

2003 (2)

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
[Crossref]

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

1996 (1)

H. Masuda and M. M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35, L126–L129 (1996).
[Crossref]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

1994 (1)

1986 (1)

B. Pettinger, “Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs,” J. Chem. Phys. 85, 7442–7451 (1986).
[Crossref]

1983 (1)

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

1982 (1)

P. Lee and D. Meisal, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

1976 (1)

Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Ayala-Orozco, C.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Blatchford, C.

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

Borthen, P.

Brannan, T.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Bumm, L.

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

Burstein, E.

Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
[Crossref]

Callaghan, R.

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

Chen, C.

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
[Crossref]

Chen, L.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Chen, S. J.

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Chen, W. P.

Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
[Crossref]

Chen, Y. J.

Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
[Crossref]

Ciepiela, E.

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

Coenen, T.

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

Cong, M.

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

Coronado, E.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Dlott, D. D.

Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
[Crossref]

Dong, B.

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

Dresselhaus, M. S.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

El-Sayed, I. H.

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

El-Sayed, M. A.

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

Etchegoin, P. G.

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Fang, Y.

Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
[Crossref]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

Futamata, M.

Gole, A.

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Gu, Y. J.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Halas, N. J.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Hu, D.

D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
[Crossref]

Huang, K. T.

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Huang, X. H.

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Jan, P. K.

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Kelly, K.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kerker, M.

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

Kikuchi, T.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

King, N. S.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Koenderink, A. F.

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

Kong, J.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Le Ru, E. C.

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Lee, P.

P. Lee and D. Meisal, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

Li, H. B.

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Li, J.

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Li, Y.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Li, Z. P.

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

Lin, G. Y.

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Ling, X.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Liu, Y.

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Liu, Z. F.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Lombardi, J. R.

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

Lu, D.

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Masuda, H.

H. Masuda and M. M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35, L126–L129 (1996).
[Crossref]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

McKee, K.

K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
[Crossref]

McKee, K. J.

M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
[Crossref]

Meisal, D.

P. Lee and D. Meisal, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

Meyer, M.

K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
[Crossref]

Meyer, M. W.

M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
[Crossref]

Meyer, S. A.

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Murphy, C.

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Natsui, S.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

Nishinaga, O.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

Nordlander, P.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Orendorff, C.

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Otto, A.

Pettinger, B.

B. Pettinger, “Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs,” J. Chem. Phys. 85, 7442–7451 (1986).
[Crossref]

Piner, R. D.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
[Crossref]

Polman, A.

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

Qi, Z.

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
[Crossref]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Ruoff, R. S.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
[Crossref]

Satoh, M. M.

H. Masuda and M. M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35, L126–L129 (1996).
[Crossref]

Sau, T.

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Schatz, G.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Schumacher, D.

Seong, N.

Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Siiman, O.

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

Smith, E. A.

K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
[Crossref]

M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
[Crossref]

Stepniowski, W. J.

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

Su, Y. T.

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Sulka, G. D.

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

Sun, M. T.

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

Suzuki, R. O.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

Tang, B.

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Thomassen, J.

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vesseur, E. R.

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

Wang, L.

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

Wang, S.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Wang, S. Y.

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

Wang, Y.

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Wu, Z. Y.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Xiao, J. Q.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Xu, H. X.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Xu, S. P.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Xu, T. T.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
[Crossref]

Xu, W. G.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Xu, W. Q.

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Yih, J. N.

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Zaraska, L.

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

Zhang, J.

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Zhang, W.

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Zhao, B.

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, L.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zheng, X. L.

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Zhou, J.

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Acc. Chem. Res. (2)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

P. K. Jan, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

ACS Nano (1)

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[Crossref]

Anal. Chem. (3)

K. McKee, M. Meyer, and E. A. Smith, “Plasmon waveguide resonance Raman spectroscopy,” Anal. Chem. 84, 4300–4306 (2012).
[Crossref]

C. Orendorff, A. Gole, T. Sau, and C. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Appl. Spectrosc. (1)

J. Chem. Phys. (1)

B. Pettinger, “Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs,” J. Chem. Phys. 85, 7442–7451 (1986).
[Crossref]

J. Phys. Chem. (2)

P. Lee and D. Meisal, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver,” J. Phys. Chem. 87, 1014–1023 (1983).
[Crossref]

J. Phys. Chem. B (1)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (3)

M. W. Meyer, K. J. McKee, and E. A. Smith, “Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films,” J. Phys. Chem. C 116, 24987–24992 (2012).
[Crossref]

S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, and W. Q. Xu, “Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 24942–24949 (2015).
[Crossref]

D. Hu, C. Chen, and Z. Qi, “Resonant mirror enhanced Raman spectroscopy,” J. Phys. Chem. C 118, 13099–13106 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, and W. Q. Xu, “Waveguide-enhanced surface plasmons for ultrasensitive SERS detection,” J. Phys. Chem. Lett. 4, 3153–3157 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Masuda and M. M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35, L126–L129 (1996).
[Crossref]

Langmuir (1)

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19, 1443–1445 (2003).
[Crossref]

Nano Lett. (1)

T. Coenen, E. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464, 392–395 (2010).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C. Chen, J. Li, L. Wang, D. Lu, and Z. Qi, “Waveguide-coupled directional Raman radiation for surface analysis,” Phys. Chem. Chem. Phys. 17, 21278–21287 (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals,” Phys. Rev. Lett. 36, 1207–1210 (1976).
[Crossref]

Plasmonics (1)

B. Dong, W. Zhang, Z. P. Li, and M. T. Sun, “Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide,” Plasmonics 6, 189–193 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. USA 109, 9281–9286 (2012).
[Crossref]

Proc. SPIE (1)

J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, and G. Y. Lin, “A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device,” Proc. SPIE 5327, 5–9 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, and W. Q. Xu, “Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering,” Rev. Sci. Instrum. 81, 036105 (2010).
[Crossref]

Sci. Rep. (1)

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Rep. 3, 2748 (2013).
[Crossref]

Science (2)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

Y. Fang, N. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388–392 (2008).
[Crossref]

Thin Solid Films (2)

L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films 534, 155–161 (2013).
[Crossref]

H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, and W. Q. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the WEF-LSP configuration. EM distributions in the waveguide layer and adjacent air layer under (b) TM and (c) TE light. Arrows disclose the polarization directions in the waveguide layers. The thickness of the waveguide is 560 nm. (d) Plots of the electric intensities along the z coordinate away from the prism. Different penetration depths of the electric field in air were observed for the TE and TM modes.

Fig. 2.
Fig. 2.

Polarizations in different surface electric fields in the present WEF configuration. Solid arrows indicate the light propagation directions and dashed arrows stand for the electric field direction in different dielectric layers. TM and TE correspond to the incident polarization to excite the waveguide modes in dielectric layer 2. The solid and dashed arrows in the “TM” and “TE” columns correspond to the propagation direction of the EM wave and vibration direction of the electric field, respectively. A circle with a dot indicates an arrow pointing to the outward page plane.

Fig. 3.
Fig. 3.

Plots of the angle-resolved reflection spectra using a bright lamp as a light source under TM and TE polarizations, collected from the prism side by a self-built, angle-scanned spectroscopic system. Color scales in (a) and (b) indicate reflectivity, while dark color means the waveguide mode caused low reflectivity, that is, strong absorption. (c) Angle-dependent mirror reflection curves with 532 nm laser irradiation under TM and TE. For comparison, the SPR curve from a 45 nm Ag film on the Kretschmann prism is also collected.

Fig. 4.
Fig. 4.

Measured waveguide resonance curves detected with different Ag film thicknesses as the matching layer. The 532 nm TE wave was used and the waveguide thickness was 550 nm.

Fig. 5.
Fig. 5.

EM distributions in the waveguide layer and Ag NPs excited by the WEF (1) with the incident polarizations of (a), (b) TE and (c), (d) TM. In contrast, the EM distributions in the waveguide layer and Ag NPs directly excited by the incident polarizations (2) of (e), (f) TE and (g), (h) TM from the air. The color bar is the linear intensity of the |E/E0|. Arrows in white are the electric polarizations at different positions. The incident angle for the direct excitation method is 60°. Waveguide is noted as “WG”.

Fig. 6.
Fig. 6.

Top: AFM images and height plots of Ag nanospheres over the waveguide surface. The size of the left image is 10  μm×10  μm and that of the middle image is 2  μm×2  μm. Curves in the right image show the heights of the label nanospheres in the middle image. Down: (a) Reflection spectra of the WEF-LSP configuration excited by TE and TM laser. The laser wavelength is 532 nm. The reflection spectra clearly show the waveguide modes excited by TE and TM waves. (b) and (c) Corresponding SERS spectra of 4-MPY assembled on the NPs excited by the waveguide resonant modes. The excitation power for the laser is 68 mW and integration time is 30 s.

Fig. 7.
Fig. 7.

(a) Fabrication of the Ag nano-hemisphere array over the waveguide surface using vacuum deposition of Ag with a through-hole UTAM as a mask. (b) AFM image of the anodic aluminum oxide template to fabricate the Ag hemisphere array. (c) and (d) SEM images of the prepared Ag hemisphere array. The scale bar is 10 μm in (c) and 1 μm in (d). (e) AFM height mapping of the Ag nano-hemisphere array. (f) Waveguide modes with Ag nano-hemispheres excited by TE and TM waves and the corresponding SERS spectra of 4-MPY under the waveguide resonant modes (g) and (h). The excitation power for the laser is 68 mW and integration time is 30 s. (i) EM field distribution of the Ag hemisphere under WEF coupling under TM and TE polarizations. The scale bar of the electric field is linear.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E=E0exp[i(k0·rωt)],
k0=2π/(n0λ),
E=exp(km·r)E0exp[i(km·rωt)],
km=km+i·km.
2hd+φ12+φ23=2mπ,
kw=kdsinq.