Abstract

In this paper, a detailed theoretical study on the characteristics of cone-shaped inwall capillary-based microsphere resonators is described and demonstrated for sensing applications. The maximum, minimum, slope, contrast, and width of the Fano resonance are analyzed. As the transmission coefficient of the capillary resonator increases, the absolute value of the slope of Fano resonances increases to reach its maximum, which is useful for sensors with an ultra-high sensitivity. There occurs another phenomenon of electromagnetically induced transparency when the reflectivity at the capillary–environment interface is close to 100%. We also experimentally demonstrated its capability for temperature and refractive index sensing, with a sensitivity of 10.9  pm/°C and 431  dB/RIU based on the Fano resonance and the Lorentzian line shape, respectively.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances in cone-shaped inwall capillary based microsphere resonator

Xiaobei Zhang, Yong Yang, Haiyang Shao, Huawen Bai, Fufei Pang, Hai Xiao, and Tingyun Wang
Opt. Express 25(2) 615-621 (2017)

Coupled Fano resonators

Xiaoguang Tu, Landobasa Y. Mario, and Ting Mei
Opt. Express 18(18) 18820-18831 (2010)

Controlled excitation of higher radial order whispering gallery modes with metallic diffraction grating

Yanyan Zhou, Feng Luan, Bobo Gu, and Xia Yu
Opt. Express 23(4) 4991-4996 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  2. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
    [Crossref]
  3. F. Vanier, F. Côté, M. E. Amraoui, Y. Messaddeq, Y. A. Peter, and M. Rochette, “Low-threshold lasing at 1975  nm in thulium-doped tellurite glass microspheres,” Opt. Lett. 40, 5227–5230 (2015).
    [Crossref]
  4. L. Xu, L. Liu, M. Li, X. Wu, and X. Tu, “Ultraviolet single-frequency coupled optofluidic ring resonator dye laser,” Opt. Express 20, 19996–20001 (2012).
    [Crossref]
  5. P. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add-drop filter,” Opt. Lett. 39, 5208–5211 (2014).
    [Crossref]
  6. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
    [Crossref]
  7. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  8. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24, 17511–17521 (2016).
    [Crossref]
  9. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  10. R. Wang, M. Fraser, J. Li, X. Qiao, and A. Wang, “Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation,” Opt. Lett. 40, 308–311 (2015).
    [Crossref]
  11. B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  12. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20, 18319–18325 (2012).
    [Crossref]
  13. Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
    [Crossref]
  14. B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
    [Crossref]
  15. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010).
    [Crossref]
  16. Y. L. Shang, M. Y. Ye, and X. M. Lin, “Experimental observation of Fano-like resonance in a whispering-gallery-mode microresonator in aqueous environment,” Photon. Res. 5, 119–123 (2017).
    [Crossref]
  17. Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
    [Crossref]
  18. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
    [Crossref]
  19. X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
    [Crossref]
  20. X. Zhang, Y. Yang, H. Shao, H. Bai, F. Pang, H. Xiao, and T. Wang, “Fano resonances in cone-shaped inwall capillary based microsphere resonator,” Opt. Express 25, 615–621 (2017).
    [Crossref]
  21. Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photon. Res. 2, 71–74 (2014).
    [Crossref]
  22. X. Zhang, J. Xiong, F. Gu, J. Li, W. Wang, F. Pang, and T. Wang, “Fabrication and sensing characteristics of intrinsic Fabry–Perot interferometers in fiber tapers,” Chin. Opt. Lett. 13, 120602 (2015).

2017 (2)

2016 (2)

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24, 17511–17521 (2016).
[Crossref]

2015 (5)

2014 (3)

2013 (1)

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

2012 (3)

2010 (2)

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010).
[Crossref]

2009 (1)

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

2004 (1)

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Amraoui, M. E.

Bai, H.

Bo, L.

Brambilla, G.

Chang, L.

Chen, W.

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Côté, F.

Deng, Q.

Ding, M.

Ding, W.

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Fan, H.

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Farrell, G.

Foreman, M. R.

Fraser, M.

Gaeta, A. L.

Gong, Q.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Gu, F.

Guan, C.

He, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

Hua, S.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
[Crossref]

Jiang, X.

Jiang, X. F.

B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Lamont, M. R. E.

Li, B. B.

B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Li, G.

Li, J.

Li, M.

L. Xu, L. Liu, M. Li, X. Wu, and X. Tu, “Ultraviolet single-frequency coupled optofluidic ring resonator dye laser,” Opt. Express 20, 19996–20001 (2012).
[Crossref]

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Li, Q.

Li, X.

Li, Y.

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Lin, X. M.

Lipson, M.

Liu, L.

Liu, N.

Liu, Y.

Liu, Y. C.

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Luan, F.

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Luke, K.

Maleki, L.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
[Crossref]

Messaddeq, Y.

Murugan, G. S.

Nori, F.

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Okawachi, Y.

Pang, F.

Peng, B.

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Peter, Y. A.

Qiao, X.

Qiu, M.

Rochette, M.

Sahin Kaya, Ö.

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Savchenkov, A. A.

Semenova, Y.

Shang, Y. L.

Shao, H.

Shi, L.

Su, Y.

Sun, X.

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Swaim, J. D.

Tu, X.

Vanier, F.

Vollmer, F.

Wang, A.

Wang, L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Wang, P.

Wang, R.

Wang, T.

Wang, W.

Wu, Q.

Wu, X.

Xiao, H.

Xiao, M.

Xiao, Y. F.

B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Xiao, Y.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

Xiong, J.

Xu, L.

Xu, X.

Yan, M.

Yang, L.

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

Yang, Y.

Ye, M. Y.

Yi, H.

Yu, X.

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Yuan, S.

Zhang, X.

Zheng, C.

Zhou, Y.

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Zhou, Z.

Zhu, D.

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

Zhu, S.

Zou, C. L.

B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Zou, C.-L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

B. B. Li, Y. F. Xiao, C. L. Zou, and X. F. Jiang, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Y. Zhou, D. Zhu, X. Yu, W. Ding, and F. Luan, “Fano resonances in metallic grating coupled whispering gallery mode resonator,” Appl. Phys. Lett. 103, 151108 (2013).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Laser Photon. Rev. (1)

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Nat. Commun. (1)

B. Peng, Ö. Sahin Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Photon. Res. (2)

Phys. Rev. A (1)

Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82, 13442–13444 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the cone-shaped inwall capillary-based microsphere resonator. (b) A typical Fano resonance and relevant parameter definitions.

Fig. 2.
Fig. 2.

(a) Simulation of Fano resonances versus normalized frequency and δ (the reflection is normalized). (b)–(e) are the progression of PR as a function of δ in four quadrants of π/4 each.

Fig. 3.
Fig. 3.

(a)–(c) Simulations when τ are 0.9, 0.95, and 0.99, respectively. (d) Illustration of the changing process of slope.

Fig. 4.
Fig. 4.

Simulation of (a) the maximum and (b) the minimum versus t, when τ is 0.9, 0.95, and 0.99.

Fig. 5.
Fig. 5.

When τ is 0.9, 0.95, and 0.99, simulation of (a) Δθ/π and (b) contrast (dB).

Fig. 6.
Fig. 6.

(a)–(c) Simulations when δ adopted as 0, 0.5π, and 0.265π, respectively, with r increasing from 0 to 100%. (d) The slope and width of the Fano resonances with r increasing from 10% to 100%.

Fig. 7.
Fig. 7.

(a) Spectra, (b) peak wavelength shifts, and (c) width of a Fano resonance when temperature increases.

Fig. 8.
Fig. 8.

(a) Spectra of the device in solutions with different refractive indices. (b) Intensity of the resonance peak at 1529 nm marked with a blue circle versus the refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PR=|r(tτtp21τt2p2)2exp(2iδ)τk2p1τt2p2|2,
Δλ0ΔT=(α+ξ)λ0,