Abstract

A few-mode (FM) vertical cavity surface emitting laser (VCSEL) chip with heavily zinc-diffused contact layer and oxide-confined cross-section is demonstrated for carrying pre-leveled 16-quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM) data in OM4 multi-mode fiber (MMF) over 100 m for intra-data-center applications. The FM VCSEL chip, which has an oxide-confined emission aperture of 5 μm, demonstrates high external quantum efficiency, provides an optical power of 2.2 mW at 38 times threshold condition, and exhibits 3 dB direct-modulation bandwidth beyond 22 GHz at a cost of slight heat accumulation. At a DC bias point of 5 mA (22.6Ith) the FM VCSEL chip, with sufficiently normalized modulation output, supports Baud and data rates of 25 and 100 Gb/s, respectively, with forward error correction (FEC) certifying receiving quality after back-to-back transmission. After passing through 100 m OM4 MMF with a receiving power penalty of 4 dB, the FM VCSEL chip demonstrates FEC-certified transmission of the pre-leveled 16-QAM OFDM data at 92 Gb/s.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission

Hsuan-Yun Kao, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Yu-Chieh Chi, Jian Jang Huang, Hao-Chung Kuo, Tien-Tsorng Shih, Jau-Ji Jou, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin
Opt. Express 25(14) 16347-16363 (2017)

TO-56-can packaged colorless WRC-FPLD for QAM OFDM transmission at 42 Gbit/s over 25-km SMF

Min-Chi Cheng, Yu-Chieh Chi, Cheng-Ting Tsai, Chung-Yu Lin, and Gong-Ru Lin
Opt. Express 23(17) 22676-22690 (2015)

Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF

Yi-Cheng Li, Yu-Chieh Chi, Min-Chi Cheng, I-Cheng Lu, Jason Chen, and Gong-Ru Lin
Opt. Express 21(14) 16722-16735 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
    [Crossref]
  2. S. J. Trowbridge, “Ethernet and OTN—400G and beyond,” in Conference on Optical Fiber Communication, Los Angeles, California (2015), paper Th3H.1.
  3. P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
    [Crossref]
  4. P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
    [Crossref]
  5. C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.
  6. H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).
  7. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.
  8. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
    [Crossref]
  9. A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
    [Crossref]
  10. H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.
  11. M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
    [Crossref]
  12. Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
    [Crossref]
  13. I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
    [Crossref]
  14. J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
    [Crossref]
  15. N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.
  16. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
    [Crossref]
  17. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
    [Crossref]
  18. P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
    [Crossref]
  19. K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
    [Crossref]
  20. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.
  21. J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.
  22. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
    [Crossref]
  23. F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
    [Crossref]
  24. R. Puerta, J. J. V. Olmos, I. T. Monroy, N. N. Ledentsov, and J. P. Turkiewicz, “Flexible multiCAP modulation and its application to 850  nm VCSEL-MMF links,” J. Lightwave Technol. 35, 3168–3173 (2017).
    [Crossref]
  25. I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
    [Crossref]
  26. P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
    [Crossref]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  28. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
    [Crossref]
  29. H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
    [Crossref]
  30. H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
    [Crossref]
  31. J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
    [Crossref]
  32. Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
    [Crossref]
  33. M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22, 15724–15736 (2014).
    [Crossref]
  34. L. A. Coldren and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).
  35. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C.-C. Hasnain, and M.-C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
    [Crossref]
  36. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

2017 (2)

2015 (2)

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

2014 (2)

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22, 15724–15736 (2014).
[Crossref]

2013 (4)

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

2012 (2)

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

2011 (1)

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
[Crossref]

2010 (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

2009 (2)

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

2008 (2)

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C.-C. Hasnain, and M.-C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
[Crossref]

2006 (2)

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

2005 (1)

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

1999 (1)

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

1998 (1)

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

1992 (1)

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

1989 (1)

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Agrell, E.

Amann, M. C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Amann, M.-C.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
[Crossref]

Amano, C.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Anan, T.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Andrekson, P. A.

Arafin, S.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
[Crossref]

Bachmann, A.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
[Crossref]

Baks, C.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Balemarthy, K.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Bardin, T.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

Bengtsson, J.

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

Bimberg, D.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Bond, A. E.

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

Breyer, F.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.

Chang, S.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

Chao, L.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Chen, C.-C.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

Chen, H.-Y.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chen, J.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chen, K.-Z.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Cheng, M.-C.

Cheng, W.-H.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Chi, K.-L.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chi, Y.-C.

Chiu, S.-W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).

Dapkus, P. D.

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

Debernardi, P.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

Deng, L.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Dziura, T. G.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

Fernandez, R.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

Fukatsu, K.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Geen, M.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Geske, J.

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

Gholami, A.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

Guol, S.-H.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

Gustavsson, J. S.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Haglund, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

Haglund, E.

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Haglund, E. P.

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

Hanik, N.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.

Harrison, I.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Hasnain, C.-C.

Hatakeyama, H.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Henini, M.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Ho, H. P.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Hsieh, D.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Huang, C.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Huang, J. J.

Huang, J.-J.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Hughes, O. H.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Iga, K.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

Jalics, C.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

Jedrasik, P.

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

Jensen, J. B.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Joel, A.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Jou, J.-J.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Kagawa, T.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Kao, H.-Y.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Karinou, F.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Karlsson, M.

Kögel, B.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Kuo, H.-C.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

Kurokawa, T.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Lai, F.-I.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Landry, G.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Larisch, G.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Larsson, A.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Lau, E. K.

Lavrencik, J.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Ledentsov, N.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Ledentsov, N. N.

Lee, S. C. J.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.

Lee, T.-C.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Leong, S.-F.

Li, H.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Li, H. E.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

Li, Y.-C.

Liang, S.-F.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Lin, C. K.

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

Lin, G.-R.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22, 15724–15736 (2014).
[Crossref]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

Lin, W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Lopez, R. R.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Lott, J.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Lott, J. A.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

Lu, H.-H.

Lu, I.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

MacDougal, M. H.

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

Maute, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Michalzik, R.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

Molin, D.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

Monroy, I. T.

R. Puerta, J. J. V. Olmos, I. T. Monroy, N. N. Ledentsov, and J. P. Turkiewicz, “Flexible multiCAP modulation and its application to 850  nm VCSEL-MMF links,” J. Lightwave Technol. 35, 3168–3173 (2017).
[Crossref]

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Moser, P.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

Mutig, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Ohiso, Y.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Olmos, J. J. V.

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Ostermann, J. M.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

Parekh, D.

Peng, C.-Y.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Peng, P.-C.

Pong, C.-Y.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

Prince, K.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Proesel, J.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Puerta, R.

Randel, S.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.

Rosskopf, J.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Safaisini, R.

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Shi, J.-W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

Shieh, W.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

Shih, T.-T.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Shubochkin, R.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Sillard, P.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

Skold, M.

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Sun, Y.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Sung, H.-K.

Suzuki, N.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Szczerba, K.

Tateno, K.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Trowbridge, S. J.

S. J. Trowbridge, “Ethernet and OTN—400G and beyond,” in Conference on Optical Fiber Communication, Los Angeles, California (2015), paper Th3H.1.

Tsai, C.-T.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22, 15724–15736 (2014).
[Crossref]

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Tsuda, H.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Tsuji, M.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Tuck, B.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Turkiewicz, J. P.

Uenohara, H.

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

Varghese, A.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Varighese, S.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

Wang, H.-Y.

Wang, S. C.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

Wei, C.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Weng, Z.-K.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

Wolf, P.

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Wu, C.-H.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

Wu, M.-C.

Wu, Y.-S.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

Yang, Y. J.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

Yang, Y.-J.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

Yashiki, K.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

Zhang, S.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

Electron. Lett. (4)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28, 274–276 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

Å. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42, 231–240 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17, 1576–1583 (2011).
[Crossref]

H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5, 537–545 (1999).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (6)

M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10, 9–11 (1998).
[Crossref]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850  nm wavelength,” IEEE Photon. Technol. Lett. 20, 1121–1123 (2008).
[Crossref]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55  μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18, 424–426 (2006).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17, 1593–1595 (2005).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Fiber Technol. (1)

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19, 206–212 (2013).
[Crossref]

Proc. SPIE (1)

P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 9001103 (2014).
[Crossref]

Semicond. Sci. Technol. (1)

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4, 841–846 (1989).
[Crossref]

Other (11)

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication, Anaheim, California (2006), paper OFA4.

H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication, Los Angeles, California (2017), paper Th2A.38.

S. J. Trowbridge, “Ethernet and OTN—400G and beyond,” in Conference on Optical Fiber Communication, Los Angeles, California (2015), paper Th3H.1.

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64  Gb/s transmission over 57  m MMF using an NRZ modulated 850  nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco, California (2014), paper Th3C. 2.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Conference on Optical Fiber Communication, San Diego, California (2008), paper OWB5.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication, Dusseldorf, Germany (2016), paper Th.1.C.5.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

L. A. Coldren and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Experimental setup of proposed FM zinc-diffused VCSEL chip at 850 nm based on 16-QAM OFDM over 100 m MMF and (b) block diagrams of the encoding and decoding algorithms for 16-QAM OFDM transmission.

Fig. 2.
Fig. 2.

(a) Schematic layer structure, (b) stimulated and (c) experimental optical spectrum, and (d) power-to-current and (e) voltage-to-current responses of the FM VCSEL chip.

Fig. 3.
Fig. 3.

(a) Normalized modulation output and (b) RIN responses of the FM VCSEL chip.

Fig. 4.
Fig. 4.

(a) Subcarrier SNR and BER responses, and (b) average BER of the 16-QAM OFDM data carried by the FM VCSEL at different bias currents.

Fig. 5.
Fig. 5.

CCDFs of the PAPR for the QAM OFDM data carried by the FM VCSEL at different bias currents.

Fig. 6.
Fig. 6.

(a) BERs and constellation plots of 16-QAM OFDM data carried by the FM VCSEL without and with pre-leveling at different bandwidths. (b) Subcarrier SNR and BER of the 100 Gb/s 16-QAM OFDM data carried by the FM VCSEL chip.

Fig. 7.
Fig. 7.

(a) Subcarrier SNR and BER responses and (b) constellation plots of the 16-QAM OFDM data before and after 100 m MMF transmissions.

Fig. 8.
Fig. 8.

OFDM data after transmission (a) without and (b) with pre-leveling technique.

Fig. 9.
Fig. 9.

(a) Average BER, (b) subcarrier SNR and BER responses, and (c) constellation performance of the 16-QAM OFDM data transmitted over 100 m MMF at different pre-leveling slopes. (d) BER versus receiving power of the 16-QAM OFDM data carried by the FM VCSEL with and without pre-leveling under BtB and 100 m MMF transmissions; Pre: pre-leveling.

Tables (1)

Tables Icon

Table 1. Information on the 16-QAM OFDM Para

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔλRMS=i=1nPi(λii=1nPiλi/i=1nPi)2/i=1nPi,
fr12πvggSbτp12πgηiτpqgthV(IIth)12π(αi+αm)vggΓPαmhνV,
γ=4π2τp(1+Γgpg)fr2+γ0,
PAPR=max{|s(t)|2}E{|s(t)|2},t[0,Ts]