Abstract

A narrowband tunable antireflection optical filter is proposed and numerically studied. The structure is a metasurface based on plasmonic nanoparticles on an electro-optic film in a three-layer configuration of metal-dielectric-metal (MDM) in the visible near-infrared range. By tuning the voltage and thus tuning the refractive index of the dielectric LiNbO3, one can shift the wavelength of minimum reflection as desired. The parameters of gold nanoparticles and other elements used for the filter design and refractive index of the dielectric are obtained by the finite-element method (FEM). An analytical theory is presented to explain the FEM simulation results, and they agree well with each other. It is found that the frequency of the plasmonic resonance wave on the metasurface should be equal to that of the Fabry–Perot resonator formed by the MDM to have a good filtering property. Theoretical spectra obtained by FEM simulation show that the structure has extensive potential for the design of tunable narrow-band filters for modulators, displayers, and color extraction for imaging.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Multi-mode resonance properties of two-dimensional metal-dielectric-metal fishnet metasurface at visible wavelengths

Yuan Ren, Yonghua Lu, Tianyang Zang, Yong Wang, Yanqiu Dai, and Pei Wang
Opt. Express 25(23) 28417-28426 (2017)

Narrowband electrooptic tunable notch filter

Richard Lytel and George F. Lipscomb
Appl. Opt. 25(21) 3889-3895 (1986)

Dirac semimetals based tunable narrowband absorber at terahertz frequencies

Gui-Dong Liu, Xiang Zhai, Hai-Yu Meng, Qi Lin, Yu Huang, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 26(9) 11471-11480 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
    [Crossref]
  2. D. K. Gramotnev and S. T. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  3. M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [Crossref]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref]
  5. W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, W. W. Du, and X. L. Tang, “A bilayer metallic nanofilms in broadband antireflection in terahertz optical systems,” Opt. Express 22, 2174–2184 (2014).
    [Crossref]
  6. E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  7. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
    [Crossref]
  8. R. Bandyopadhyay and R. Chakraborty, “Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material,” Opt. Eng. 54, 117105 (2015).
    [Crossref]
  9. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
    [Crossref]
  10. Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
    [Crossref]
  11. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
    [Crossref]
  12. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref]
  13. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
    [Crossref]
  14. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  15. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  16. H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
    [Crossref]
  17. G. M. Wang, H. X. Xu, J. Xiao, T. Cai, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
    [Crossref]
  18. H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
    [Crossref]
  19. H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
    [Crossref]
  20. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [Crossref]
  21. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface Plasmon polariton reflector with Bragg-grating based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
    [Crossref]
  22. L. Domeash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable multiple cavity thin film filter,” J. Lightwave Technol. 22, 126–135 (2004).
    [Crossref]
  23. M. A. Swillam and R. K. Y. Ismail, “Tunable nanoplasmonics,” Adv. Electromagn. 2, 1–5 (2013).
    [Crossref]
  24. M. Xiao and N. Rakov, “Surface propagation with large spectral red-shift on a gold thin film containing subwavelength holes,” Phys. Lett. A 309, 452–456 (2003).
    [Crossref]
  25. U. Kreibig and P. Zacharias, “Surface plasmon resonances in small special silver and gold particles,” Z. Phys. 231, 128–143 (1970).
    [Crossref]
  26. T. Volk and M. Wohlecke, “Lithium Niobate: defects, photorefraction and ferroelectric switching,” Springer Ser. Mater. Sci. 115, XIV–250 (2009).
    [Crossref]
  27. M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
    [Crossref]
  28. Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate,” Optik 120, 195–198 (2009).
    [Crossref]
  29. C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]
  30. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [Crossref]
  31. A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
    [Crossref]
  32. H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
    [Crossref]

2016 (4)

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

G. M. Wang, H. X. Xu, J. Xiao, T. Cai, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

2015 (3)

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

R. Bandyopadhyay and R. Chakraborty, “Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material,” Opt. Eng. 54, 117105 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

2014 (1)

2013 (2)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

M. A. Swillam and R. K. Y. Ismail, “Tunable nanoplasmonics,” Adv. Electromagn. 2, 1–5 (2013).
[Crossref]

2012 (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

2011 (2)

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

2010 (2)

2009 (5)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface Plasmon polariton reflector with Bragg-grating based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[Crossref]

T. Volk and M. Wohlecke, “Lithium Niobate: defects, photorefraction and ferroelectric switching,” Springer Ser. Mater. Sci. 115, XIV–250 (2009).
[Crossref]

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate,” Optik 120, 195–198 (2009).
[Crossref]

2008 (3)

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

2004 (2)

L. Domeash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable multiple cavity thin film filter,” J. Lightwave Technol. 22, 126–135 (2004).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

2003 (1)

M. Xiao and N. Rakov, “Surface propagation with large spectral red-shift on a gold thin film containing subwavelength holes,” Phys. Lett. A 309, 452–456 (2003).
[Crossref]

2001 (1)

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

1970 (1)

U. Kreibig and P. Zacharias, “Surface plasmon resonances in small special silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[Crossref]

Abedin, K. M.

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Aenderton, C. R.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Atwater, H. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Aufray, M.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Bandyopadhyay, R.

R. Bandyopadhyay and R. Chakraborty, “Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material,” Opt. Eng. 54, 117105 (2015).
[Crossref]

Betremieux, Y.

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

Bozhevolnyi, S. T.

D. K. Gramotnev and S. T. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Cai, T.

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

G. M. Wang, H. X. Xu, J. Xiao, T. Cai, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
[Crossref]

Chakraborty, R.

R. Bandyopadhyay and R. Chakraborty, “Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material,” Opt. Eng. 54, 117105 (2015).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Chiang, I. K.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Cui, T. J.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Domeash, L.

Du, W. W.

Ebbeson, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Eschbach, J.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fort, Y.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Gong, Y.

Gramotnev, D. K.

D. K. Gramotnev and S. T. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Haider, A. F. M. Y.

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

He, Q.

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Hu, X.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Huang, T. J.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Ismail, R. K. Y.

M. A. Swillam and R. K. Y. Ismail, “Tunable nanoplasmonics,” Adv. Electromagn. 2, 1–5 (2013).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Kerr, R.

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Khoo, I. C.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kim, H.

Kong, G. S.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

Kreibig, U.

U. Kreibig and P. Zacharias, “Surface plasmon resonances in small special silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[Crossref]

Lai, W. E.

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Lee, B.

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Li, H. P.

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface Plasmon polariton reflector with Bragg-grating based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[Crossref]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Liu, X.

Liu, Y. J.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Loou, J.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Lu, H.

Luo, W.

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

Ma, E.

Ma, H. F.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

Ma, S.

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

Maier, S. A.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Mao, D.

Maria, J.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Menuel, S.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Nemchuk, N.

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Noto, J.

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

Park, J.

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Rakov, N.

M. Xiao and N. Rakov, “Surface propagation with large spectral red-shift on a gold thin film containing subwavelength holes,” Phys. Lett. A 309, 452–456 (2003).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Rouxel, D.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Sengupta, S.

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Sun, S.

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Swillam, M. A.

M. A. Swillam and R. K. Y. Ismail, “Tunable nanoplasmonics,” Adv. Electromagn. 2, 1–5 (2013).
[Crossref]

Talukder, A. I.

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Tang, S.

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Tang, X. L.

Thompson, L. B.

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

Villenueve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Vincent, B.

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

Volk, T.

T. Volk and M. Wohlecke, “Lithium Niobate: defects, photorefraction and ferroelectric switching,” Springer Ser. Mater. Sci. 115, XIV–250 (2009).
[Crossref]

Wang, G. M.

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

G. M. Wang, H. X. Xu, J. Xiao, T. Cai, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
[Crossref]

Wang, G. Z.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

Wang, L.

Wen, Q. Y.

Wohlecke, M.

T. Volk and M. Wohlecke, “Lithium Niobate: defects, photorefraction and ferroelectric switching,” Springer Ser. Mater. Sci. 115, XIV–250 (2009).
[Crossref]

Wu, M.

Xiao, J.

Xiao, M.

M. Xiao and N. Rakov, “Surface propagation with large spectral red-shift on a gold thin film containing subwavelength holes,” Phys. Lett. A 309, 452–456 (2003).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Xu, H. X.

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

G. M. Wang, H. X. Xu, J. Xiao, T. Cai, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Zacharias, P.

U. Kreibig and P. Zacharias, “Surface plasmon resonances in small special silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhang, H.

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

Zhang, H. W.

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhang, Y.

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate,” Optik 120, 195–198 (2009).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zheng, Y. B.

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

Zhou, L.

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Zhu, Q.

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate,” Optik 120, 195–198 (2009).
[Crossref]

Zhu, Y. H.

Zhuang, Y. Q.

Adv. Electromagn. (1)

M. A. Swillam and R. K. Y. Ismail, “Tunable nanoplasmonics,” Adv. Electromagn. 2, 1–5 (2013).
[Crossref]

Appl. Phys. A (1)

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl. Phys. A 105, 487–495 (2011).
[Crossref]

Appl. Phys. Lett. (1)

H. X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109, 193506 (2016).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Aenderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructure plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Nanosci. Nanotechnol. (1)

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent, “New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis,” J. Nanosci. Nanotechnol. 9, 4780–4785 (2009).
[Crossref]

J. Phys. Chem. C (1)

Y. J. Liu, Y. B. Zheng, J. Loou, I. K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in hybrid system composed of photon-switchable gratings and Au nanodisk array,” J. Phys. Chem. C 115, 7717–7722 (2011).
[Crossref]

J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Nano Lett. (1)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Nat. Commun. (2)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nat. Photonics (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbeson, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

D. K. Gramotnev and S. T. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref]

Opt. Eng. (1)

R. Bandyopadhyay and R. Chakraborty, “Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material,” Opt. Eng. 54, 117105 (2015).
[Crossref]

Opt. Express (6)

Optik (1)

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate,” Optik 120, 195–198 (2009).
[Crossref]

Phys. Lett. A (1)

M. Xiao and N. Rakov, “Surface propagation with large spectral red-shift on a gold thin film containing subwavelength holes,” Phys. Lett. A 309, 452–456 (2003).
[Crossref]

Proc. SPIE (1)

H. Zhang, Y. Betremieux, J. Noto, and R. Kerr, “Novel tunable liquid crystal Fabry-Perot filters for fiber-optical system,” Proc. SPIE 4583, 4564–4572 (2001).
[Crossref]

Sci. Rep. (3)

H. X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G. M. Wang, T. Cai, H. P. Li, and L. Zhou, “Dynamical control on helicity of electromagnetic waves by tunable metasurfaces,” Sci. Rep. 6, 27503 (2016).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

Springer Ser. Mater. Sci. (1)

T. Volk and M. Wohlecke, “Lithium Niobate: defects, photorefraction and ferroelectric switching,” Springer Ser. Mater. Sci. 115, XIV–250 (2009).
[Crossref]

Z. Phys. (1)

U. Kreibig and P. Zacharias, “Surface plasmon resonances in small special silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Unit cell with three spheres on the same plane in triangular configuration. (b) Overview schematic of the designed structure.
Fig. 2.
Fig. 2. Reflection and absorption spectra.
Fig. 3.
Fig. 3. (a) Electric field for wavelength of 623.29 nm. (b) Magnetic field for wavelength of 623.29 nm. (c) Electric field for wavelength of 550.38 nm. (d) Magnetic field for wavelength of 550.38 nm. The external electric applied is V=160  V, and the dielectric refractive index is no=2.38.
Fig. 4.
Fig. 4. Reflection and absorption spectra for different nanosphere radius: (a) 5 nm; (b) 12 nm; (c) 15 nm; and (d) 20 nm.
Fig. 5.
Fig. 5. Absorption and reflection versus wavelength for different dielectric thickness: (a) 60 nm; (b) 70 nm; (c) 75 nm; (d) 80 nm.
Fig. 6.
Fig. 6. (a) Absorption and (b) reflection to incident angle.
Fig. 7.
Fig. 7. (a) Optical spectra produced by the variation of applied voltage. (b) Optical spectra produced by applied voltage.
Fig. 8.
Fig. 8. Optical spectra for wider voltage range.
Fig. 9.
Fig. 9. Wavelength versus voltage.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϵrAu=ϵωp2/(ω2jγω),
no=no0+0.5no3γ13E,
S=Δλ/ΔV,
FOM=S/FWHM,
ω=2πC/(qd).
ϵrI=(d2h1+d2h2)1×(d2h14πr3+4πr3ϵrAu+d2h2ϵo),
Re(nI)(δ+h2)=pλ/2=πpC[ωRe(nI)],
ω5+c1ω4+c2ω3+c3=0,

Metrics