Abstract

By using the ultrasound-assisted liquid phase exfoliation method, Bi2Te3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber (SA), in which nonlinear absorption properties around 2 μm are analyzed with a home-made mode-locked laser. With the as-prepared Bi2Te3 SA employed, a stable passively Q-switched all-solid-state 2 μm laser is successfully realized. Q-switched pulses with a maximum average output power of 2.03 W are generated under an output coupling of 5%, corresponding to the maximum single-pulse energy of 18.4 μJ and peak power of 23 W. The delivered shortest pulse duration and maximum repetition rate are 620 ns and 118 kHz under an output coupling of 2%, respectively. It is the first presentation of such Bi2Te3 SA employed in a solid-state Q-switched crystalline laser at 2 μm, to the best of our knowledge. In comparison with other 2D materials suitable for pulsed 2 μm lasers, the saturable absorption performance of Bi2Te3 SA is proved to be promising in generating high power and high-repetition-rate 2 μm laser pulses.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber

Yi-Jian Sun, Chao-Kuei Lee, Jin-Long Xu, Zhao-Jie Zhu, Ye-Qing Wang, Shu-Fang Gao, Hou-Ping Xia, Zhen-Yu You, and Chao-Yang Tu
Photon. Res. 3(3) A97-A101 (2015)

Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313 nm

Bin Xu, Yi Wang, Jian Peng, Zhengqian Luo, Huiying Xu, Zhiping Cai, and Jian Weng
Opt. Express 23(6) 7674-7680 (2015)

Few-layered MoS2 as a saturable absorber for a passively Q-switched Er:YAG laser at 1.6  μm

Hongwang Xia, Ming Li, Tao Li, Shengzhi Zhao, Guiqiu Li, and Kejian Yang
Appl. Opt. 56(10) 2766-2770 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
    [Crossref]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [Crossref]
  3. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.
  4. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “High-energy short-pulse diode-pumped Nd: YVO4 laser and its applications for material sciences and biomedical imaging,” in IEEE Conference on Lasers and Electro-Optics (CLEO) (2003), p. 2.
  5. A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
    [Crossref]
  6. M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
    [Crossref]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  8. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
    [Crossref]
  9. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011).
    [Crossref]
  10. Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).
  11. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
    [Crossref]
  12. J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
    [Crossref]
  13. F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.
  14. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  15. J. Lee, J. Koo, and J. H. Lee, “Thulium-Holmium-codoped, passively Q-switched fiber laser incorporating Bi2Te3 saturable absorber,” in Asia Communications and Photonics Conference, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, and N. Wada, eds., OSA Technical Digest (Optical Society of America, 2015), paper AM2C.4.
  16. N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
    [Crossref]
  17. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  18. B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).
  19. F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3, A25–A29 (2015).
    [Crossref]
  20. Y.-J. Sun, C.-K. Lee, J.-L. Xu, Z.-J. Zhu, Y.-Q. Wang, S.-F. Gao, H.-P. Xia, Z.-Y. You, and C.-Y. Tu, “Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber,” Photon. Res. 3, A97–A101 (2015).
    [Crossref]
  21. B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).
  22. Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
    [Crossref]
  23. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
    [Crossref]
  24. C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
    [Crossref]
  25. Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  26. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  27. P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
    [Crossref]
  28. J. Hou, B. Zhang, J. He, Z. Wang, F. Lou, J. Ning, R. Zhao, and X. Su, “Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror,” Appl. Opt. 53, 4968–4971 (2014).
    [Crossref]
  29. C. Luan, K. Yang, J. Zhao, S. Zhao, L. Song, T. Li, H. Chu, J. Qiao, C. Wang, Z. Li, S. Jiang, B. Man, and L. Zheng, “WS2 as a saturable absorber for Q-switched 2 micron lasers,” Opt. Lett. 41, 3783–3786 (2016).
    [Crossref]
  30. L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2saturable absorber mirror,” Photon. Res. 3, A47–A50 (2015).
    [Crossref]
  31. H. Zhang, J. He, Z. Wang, J. Hou, B. Zhang, R. Zhao, K. Han, K. Yang, H. Nie, and X. Sun, “Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber,” Opt. Mater. Express 6, 2328–2335 (2016).
    [Crossref]

2017 (1)

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

2016 (5)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

H. Zhang, J. He, Z. Wang, J. Hou, B. Zhang, R. Zhao, K. Han, K. Yang, H. Nie, and X. Sun, “Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber,” Opt. Mater. Express 6, 2328–2335 (2016).
[Crossref]

C. Luan, K. Yang, J. Zhao, S. Zhao, L. Song, T. Li, H. Chu, J. Qiao, C. Wang, Z. Li, S. Jiang, B. Man, and L. Zheng, “WS2 as a saturable absorber for Q-switched 2 micron lasers,” Opt. Lett. 41, 3783–3786 (2016).
[Crossref]

2015 (6)

F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3, A25–A29 (2015).
[Crossref]

L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2saturable absorber mirror,” Photon. Res. 3, A47–A50 (2015).
[Crossref]

Y.-J. Sun, C.-K. Lee, J.-L. Xu, Z.-J. Zhu, Y.-Q. Wang, S.-F. Gao, H.-P. Xia, Z.-Y. You, and C.-Y. Tu, “Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber,” Photon. Res. 3, A97–A101 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

2014 (5)

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

J. Hou, B. Zhang, J. He, Z. Wang, F. Lou, J. Ning, R. Zhao, and X. Su, “Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror,” Appl. Opt. 53, 4968–4971 (2014).
[Crossref]

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

2013 (1)

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

2012 (2)

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

2011 (1)

2010 (2)

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2005 (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Ahmad, F.

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

Apandi, N. H. M.

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Bernard, F.

F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Cai, Z.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Chamorovskiy, A. Y.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

Chang, Y. M.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Cheng, C.-H.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Cheng, Y.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Chi, C.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

Chi, J.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Chi, Y.-C.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chou, C.-M.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Chou, M. M. C.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Chu, H.

Debnath, P.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Emplit, P.

F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Fuerbach, A.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

Gao, S.-F.

Gorza, S.

F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Gross, S.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Guo, Z.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Han, K.

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Hao, X.-P.

Harun, S. W.

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

He, J.

He, J.-H.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, J.-L.

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Hou, J.

Hu, H.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Huang, B.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Ibrahim, M. H.

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

Jhon, Y. M.

Jia, Z.

Jiang, G.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Jiang, S.

Jiang, X.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Jung, M.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Kim, H.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Kong, L. C.

Koo, J.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

J. Lee, J. Koo, and J. H. Lee, “Thulium-Holmium-codoped, passively Q-switched fiber laser incorporating Bi2Te3 saturable absorber,” in Asia Communications and Photonics Conference, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, and N. Wada, eds., OSA Technical Digest (Optical Society of America, 2015), paper AM2C.4.

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

Kurkov, A. S.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

Lee, C.-K.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Y.-J. Sun, C.-K. Lee, J.-L. Xu, Z.-J. Zhu, Y.-Q. Wang, S.-F. Gao, H.-P. Xia, Z.-Y. You, and C.-Y. Tu, “Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber,” Photon. Res. 3, A97–A101 (2015).
[Crossref]

Lee, H. J.

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

Lee, J.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

J. Lee, J. Koo, and J. H. Lee, “Thulium-Holmium-codoped, passively Q-switched fiber laser incorporating Bi2Te3 saturable absorber,” in Asia Communications and Photonics Conference, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, and N. Wada, eds., OSA Technical Digest (Optical Society of America, 2015), paper AM2C.4.

Lee, J. H.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

J. Lee, J. Koo, and J. H. Lee, “Thulium-Holmium-codoped, passively Q-switched fiber laser incorporating Bi2Te3 saturable absorber,” in Asia Communications and Photonics Conference, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, and N. Wada, eds., OSA Technical Digest (Optical Society of America, 2015), paper AM2C.4.

Lee, P.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Leinonen, T.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

Li, H.

Li, J.

Li, P.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Li, T.

Li, X.-L.

Li, Z.

Lin, G.-R.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, S.-F.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y.-H.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y.-Y.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Liu, J.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Liu, Y.

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lou, F.

Luan, C.

Luo, H.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Man, B.

Marakulin, A. V.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

Minkovski, N. I.

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “High-energy short-pulse diode-pumped Nd: YVO4 laser and its applications for material sciences and biomedical imaging,” in IEEE Conference on Lasers and Electro-Optics (CLEO) (2003), p. 2.

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Nie, H.

Ning, J.

Okhotnikov, O. G.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

Peng, J.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “High-energy short-pulse diode-pumped Nd: YVO4 laser and its applications for material sciences and biomedical imaging,” in IEEE Conference on Lasers and Electro-Optics (CLEO) (2003), p. 2.

Qian, L. J.

Qiao, J.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Song, L.

Song, Y.-W.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Su, X.

Sun, X.

Sun, Y.-J.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, P.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Tseng, W.-H.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Tu, C.-Y.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Y.-J. Sun, C.-K. Lee, J.-L. Xu, Z.-J. Zhu, Y.-Q. Wang, S.-F. Gao, H.-P. Xia, Z.-Y. You, and C.-Y. Tu, “Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber,” Photon. Res. 3, A97–A101 (2015).
[Crossref]

Wang, B.

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, C.

Wang, J.

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, L.

Wang, S. X.

Wang, Y.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y.-Q.

Wang, Z.

Wen, S.

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Weng, J.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Withford, M. J.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Wu, C.-I.

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C.-L.

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, Y.-Z.

Xia, H.-P.

Xie, G. Q.

Xu, B.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Xu, H.

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Xu, J.-L.

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “High-energy short-pulse diode-pumped Nd: YVO4 laser and its applications for material sciences and biomedical imaging,” in IEEE Conference on Lasers and Electro-Optics (CLEO) (2003), p. 2.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, C.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Yang, K.

Yang, K.-J.

Yao, Y.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Yi, J.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

You, Z.-Y.

Yu, H.

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, H. H.

Yuan, P.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

Zhang, B.

Zhang, G.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Zhang, H.

H. Zhang, J. He, Z. Wang, J. Hou, B. Zhang, R. Zhao, K. Han, K. Yang, H. Nie, and X. Sun, “Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber,” Opt. Mater. Express 6, 2328–2335 (2016).
[Crossref]

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Zhang, H. J.

Zhao, C.

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Zhao, J.

Zhao, R.

Zhao, S.

Zhao, Z.

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

Zheng, L.

Zhu, Z.-J.

Zou, Y.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

Zuikafly, S. N. F.

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

ACS Photon. (1)

Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, and G.-R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Annalen der Physik (1)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers,” Annalen der Physik 528, 543–550 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron. 21, 264–269 (2015).
[Crossref]

IEEE Photon. J. (3)

B. Wang, H. Yu, H. Zhang, C. Zhao, S. Wen, H. Zhang, and J. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photon. J. 6, 1–7 (2014).

Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. C. Chou, and C.-K. Lee, “High-pulse-energy topological insulator Bi2Te3 based passive Q-switched solid-state laser,” IEEE Photon. J. 8, 1–10 (2016).

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, T. Leinonen, and O. G. Okhotnikov, “High-repetition-rate Q-switched holmium fiber laser,” IEEE Photon. J. 4, 679–683 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, “Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber,” IEEE Photon. Technol. Lett. 26, 1912–1915 (2014).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Laser Photon. Rev. (1)

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Laser Phys. (1)

C. Chi, J. Lee, J. Koo, and H. J. Lee, “All-normal-dispersion dissipative-soliton fiber laser at 1.06  μm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber,” Laser Phys. 24, 105106 (2014).
[Crossref]

Laser Phys. Lett. (1)

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Nature (1)

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Cheng, J. Peng, B. Xu, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of Pr: LiYF 4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber,” Opt. Laser Technol. 88, 275–279 (2017).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Photon. Lett. Poland (1)

N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, and S. W. Harun, “Bismuth (III) telluride (Bi2Te3) embedded in PVA as a passive saturable absorber in a 2 micron region,” Photon. Lett. Poland 8, 101–103 (2016).
[Crossref]

Photon. Res. (3)

Other (5)

F. Bernard, H. Zhang, S. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

J. Lee, J. Koo, and J. H. Lee, “Thulium-Holmium-codoped, passively Q-switched fiber laser incorporating Bi2Te3 saturable absorber,” in Asia Communications and Photonics Conference, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, and N. Wada, eds., OSA Technical Digest (Optical Society of America, 2015), paper AM2C.4.

B. Huang, P. Tang, J. Yi, G. Jiang, J. Liu, Y. Zou, C. Zhao, and S. Wen, “Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617  nm,” Opt. Mater. (2016) (online).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “High-energy short-pulse diode-pumped Nd: YVO4 laser and its applications for material sciences and biomedical imaging,” in IEEE Conference on Lasers and Electro-Optics (CLEO) (2003), p. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Surface topography of three typical Bi2Te3 nanosheets. (b) Height profiles of selected nanosheets.

Fig. 2.
Fig. 2.

Measured Raman spectrum of bulk Bi2Te3 and Bi2Te3 nanosheets.

Fig. 3.
Fig. 3.

Nonlinear optical properties of the as-prepared Bi2Te3 SA.

Fig. 4.
Fig. 4.

Optical transmission spectrum of Bi2Te3 nanosheets.

Fig. 5.
Fig. 5.

Schematic setup of diode-pumped Bi2Te3 Q-switched Tm:LuAG laser.

Fig. 6.
Fig. 6.

Average output powers versus incident pump powers for the Bi2Te3 SA Q-switched Tm:LuAG laser (a) in CW regime and (b) Q-switching regime.

Fig. 7.
Fig. 7.

Output spectra for Tm:LuAG lasers in CW regime and Q-switching regime.

Fig. 8.
Fig. 8.

(a) Pulse durations, (b) repetition rates, (c) single pulse energies, and (d) peak powers as function of incident pump powers.

Fig. 9.
Fig. 9.

Temporal profiles of typical pulse trains at different repetition rates and the shortest pulse shape with duration of 620 ns.

Fig. 10.
Fig. 10.

M2 factors from the Bi2Te3 SA Q-switched Tm:LuAG laser at the highest output power.

Metrics