Abstract

Control of chirality using metamaterials plays a critical role in a diverse set of advanced photonics applications, such as polarization control, bio-sensing, and polarization-sensitive imaging devices. However, this poses a major challenge, as it primarily involves the geometrical reconfiguration of metamolecules that cannot be adjusted dynamically. Real-world applications require active tuning of the chirality, which can easily manipulate the magnitude, handedness, and spectral range of chiroptical response. Here, enabled by graphene, we theoretically reveal a tunable/switchable achiral metasurface in the near-infrared region. In the model, the achiral metasurface consists of an array of circular holes embedded through a metal/dielectric/metal trilayer incorporated with the graphene sheet, where holes occupy the sites of a rectangular lattice. Circular conversion dichroism (CCD) originates from the mutual orientation between the achiral metasurface and oblique incident wave. The achiral metasurface possesses dual-band sharp features in the CCD spectra, which are tuned over a broad bandwidth by electrically modulating the graphene’s Fermi level. By selecting aluminium as the metal materials, we numerically achieved strong CCD and considerably reduced materials costs with our nanostructures compared with the typically used noble metals such as gold and silver.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene

Tun Cao, Chen-Wei Wei, Li-Bang Mao, and Shuai Wang
Opt. Express 23(14) 18620-18629 (2015)

Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials

Tun Cao, Yang Li, Chen-Wei Wei, and Yi-mei Qiu
Opt. Express 25(9) 9911-9925 (2017)

Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface

Tun Cao, Chen-wei Wei, and Yang Li
Opt. Mater. Express 6(2) 303-311 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  2. X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
    [Crossref]
  3. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  4. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
    [Crossref]
  5. T. Bu, K. Chen, H. Liu, J. Liu, Z. Hong, and S. Zhuang, “Location-dependent metamaterials in terahertz range for reconfiguration purposes,” Photon. Res. 4, 122–125 (2016).
    [Crossref]
  6. T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
    [Crossref]
  7. N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
    [Crossref]
  8. B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
    [Crossref]
  9. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  10. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5, 1962–1971 (2015).
    [Crossref]
  11. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
    [Crossref]
  12. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref]
  13. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
    [Crossref]
  14. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
    [Crossref]
  15. B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74, 101–120 (2009).
    [Crossref]
  16. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
    [Crossref]
  17. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).
  18. C. Rizza, E. Palange, and A. Ciattoni, “Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials,” Photon. Res. 2, 121–125. (2014).
    [Crossref]
  19. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
    [Crossref]
  20. V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1, 36–45 (2011).
    [Crossref]
  21. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
    [Crossref]
  22. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
    [Crossref]
  23. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref]
  24. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
    [Crossref]
  25. T. W. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3, 439–451 (2013).
    [Crossref]
  26. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [Crossref]
  27. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
    [Crossref]
  28. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010).
    [Crossref]
  29. X. Liu, Y. Xu, Z. Zhu, S. Yu, C. Guan, and J. Shi, “Manipulating wave polarization by twisted plasmonic metamaterials,” Opt. Mater. Express 4, 1003–1010 (2014).
    [Crossref]
  30. T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
    [Crossref]
  31. X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
    [Crossref]
  32. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
    [Crossref]
  33. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity,” Opt. Lett. 39, 3274–3277 (2014).
    [Crossref]
  34. M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).
  35. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
    [Crossref]
  36. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref]
  37. R. Li, Z. Guo, W. Wang, J. Zhang, K. Zhou, J. Liu, and J. Gao, “Arbitrary focusing lens by holographic metasurface,” Photon. Res. 3, 252–255 (2015).
    [Crossref]
  38. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
    [Crossref]
  39. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
    [Crossref]
  40. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
    [Crossref]
  41. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
    [Crossref]
  42. T. Cao, Y. Li, C. W. Wei, and Y. M. Qiu, “Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials,” Opt. Express 25, 9911–9925 (2017).
    [Crossref]
  43. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
    [Crossref]
  44. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  45. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
    [Crossref]
  46. N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
    [Crossref]
  47. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
    [Crossref]
  48. Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
    [Crossref]
  49. T. Chen and S. He, “Frequency-tunable circular polarization beam splitter using a graphene-dielectric sub-wavelength film,” Opt. Express 22, 19748–19757 (2014).
    [Crossref]
  50. C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref]
  51. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
    [Crossref]
  52. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref]
  53. A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
    [Crossref]
  54. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
    [Crossref]
  55. A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
    [Crossref]
  56. W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
    [Crossref]
  57. I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).
  58. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  59. J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
    [Crossref]
  60. N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
    [Crossref]
  61. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20, 1903–1911 (2012).
    [Crossref]
  62. CST Computer Simulation Technology AG, “CST MICROWAVE STUDIO,” http://www.cst.com/Products/CSTMWS .
  63. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  64. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
    [Crossref]
  65. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  66. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
    [Crossref]
  67. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
    [Crossref]
  68. J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
    [Crossref]
  69. M. Midrio, P. Galli, M. Romagnoli, L. C. Kimerling, and J. Michel, “Graphene-based optical phase modulation of waveguide transverse electric modes,” Photon. Res. 2, A34–A40 (2014).
    [Crossref]
  70. E. Plum, “Chirality and Metamaterials,” Doctoral dissertation (University of Southampton, 2010).
  71. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
    [Crossref]
  72. C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
    [Crossref]
  73. N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
    [Crossref]
  74. M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
    [Crossref]

2017 (1)

2016 (5)

T. Bu, K. Chen, H. Liu, J. Liu, Z. Hong, and S. Zhuang, “Location-dependent metamaterials in terahertz range for reconfiguration purposes,” Photon. Res. 4, 122–125 (2016).
[Crossref]

X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
[Crossref]

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

2015 (7)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5, 1962–1971 (2015).
[Crossref]

R. Li, Z. Guo, W. Wang, J. Zhang, K. Zhou, J. Liu, and J. Gao, “Arbitrary focusing lens by holographic metasurface,” Photon. Res. 3, 252–255 (2015).
[Crossref]

2014 (11)

X. Liu, Y. Xu, Z. Zhu, S. Yu, C. Guan, and J. Shi, “Manipulating wave polarization by twisted plasmonic metamaterials,” Opt. Mater. Express 4, 1003–1010 (2014).
[Crossref]

M. Midrio, P. Galli, M. Romagnoli, L. C. Kimerling, and J. Michel, “Graphene-based optical phase modulation of waveguide transverse electric modes,” Photon. Res. 2, A34–A40 (2014).
[Crossref]

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity,” Opt. Lett. 39, 3274–3277 (2014).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
[Crossref]

T. Chen and S. He, “Frequency-tunable circular polarization beam splitter using a graphene-dielectric sub-wavelength film,” Opt. Express 22, 19748–19757 (2014).
[Crossref]

C. Rizza, E. Palange, and A. Ciattoni, “Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials,” Photon. Res. 2, 121–125. (2014).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

2013 (13)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

T. W. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3, 439–451 (2013).
[Crossref]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
[Crossref]

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
[Crossref]

2012 (7)

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20, 1903–1911 (2012).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[Crossref]

2011 (3)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1, 36–45 (2011).
[Crossref]

2010 (4)

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010).
[Crossref]

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

2009 (9)

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74, 101–120 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

2007 (4)

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
[Crossref]

2006 (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

2005 (1)

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

1998 (1)

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

An, Z.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Asakawa, K.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Azad, A. K.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Barnes, W. L.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
[Crossref]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Biris, C. G.

Boltasseva, A.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Brener, I.

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20, 1903–1911 (2012).
[Crossref]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Bu, T.

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Cao, T.

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Cardona, M.

M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).

Chen, K.

Chen, S.

Chen, T.

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

Chen, Y. P.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Cheng, H.

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

Chigrin, D. N.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Chung, T. F.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Ciattoni, A.

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Cryan, M. J.

Cui, T. J.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
[Crossref]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Dastmalchi, B.

de Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

De Clercq, B.

Decker, M.

Ding, K.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Dionne, J. A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

Djurišic, A. B.

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

Dong, W.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Economou, E. N.

Elazar, J. M.

Emani, N. K.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Eslami, S.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Fischer, P.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Gabbay, A.

Galli, P.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Gao, J.

García-Etxarri, A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

García-Meca, C.

C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Gibbs, H. M.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Gibbs, J. G.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Giessen, H.

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

Gill, P.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74, 101–120 (2009).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Gonzales, E.

Griessen, R.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Guan, C.

Guan, C. Y.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Guo, Z.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

He, Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

He, S.

He, X.

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Helgert, C.

Hendrickson, J.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Hendry, E.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
[Crossref]

Hentschel, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hinrichs, K.

Hong, Z.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Huebner, U.

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Ikeda, N.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

Inoue, K.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Jiang, J.

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Johnson, S. G.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Jonsson, F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Jun, Y. C.

Kafesaki, M.

Kan, T.

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kanda, N.

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity,” Opt. Lett. 39, 3274–3277 (2014).
[Crossref]

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Katsarakis, N.

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Kenanakis, G.

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Khitrova, G.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Kildishev, A. V.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Kimerling, L. C.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Klein, M. W.

Kley, E. B.

Kong, G. S.

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Konishi, K.

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity,” Opt. Lett. 39, 3274–3277 (2014).
[Crossref]

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kreibig, U.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Kriegler, C. E.

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Kuwata-Gonokami, M.

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity,” Opt. Lett. 39, 3274–3277 (2014).
[Crossref]

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Li, J.

Li, R.

Li, X.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Li, Y.

Li, Y. X.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Li, Z.

Li, Z. P.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Li, Z. Y.

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Linden, S.

Liu, H.

Liu, J.

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

Liu, W.

Liu, X.

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

Lsozaki, A.

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Lv, T. T.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Ma, H. F.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
[Crossref]

Ma, Q.

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Majewski, M. L.

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

Mark, A. G.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Martí, J.

C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Martínez, A.

C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

Maß, T. W.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Meinzer, N.

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
[Crossref]

Menzel, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

Miao, Z. Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Michel, A. K. U.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Michel, J.

Midrio, M.

Moshchalkov, V. V.

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Nemoto, N.

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Nesterov, M. L.

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

Neubrech, F.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Ni, X.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Oates, T. W.

Olitzky, J. D.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Ortuno, R.

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

Palange, E.

Peter, Y. Y.

M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).

Plum, E.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

E. Plum, “Chirality and Metamaterials,” Doctoral dissertation (University of Southampton, 2010).

Premaratne, M.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

Qiu, C. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Qiu, Y.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Qiu, Y. M.

Rakic, A. D.

Ranjbar, B.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74, 101–120 (2009).
[Crossref]

Reissmann, L.

Reno, J. L.

Richards, B. C.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Rizza, C.

Rockstuhl, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009).
[Crossref]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Romagnoli, M.

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Salinga, M.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Schäferling, M.

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

Schönauer, K.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Shalaev, V. M.

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shaner, E. A.

Shi, J.

Shimoyama, I.

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

Silhanek, A. V.

Simpson, R. E.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
[Crossref]

Singh, R.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Soares, B. F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Soukoulis, C. M.

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[Crossref]

Strohfeldt, N.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Sugimoto, Y.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

Sweet, J.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Tanaka, Y.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Taubner, T.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Tian, J.

Tian, X.

Tittl, A.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1, 36–45 (2011).
[Crossref]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

Volskiy, V.

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Wang, G. Z.

Wang, W.

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Wegener, M.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
[Crossref]

Wei, C.

Wei, C. W.

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Weiss, T.

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Wu, F.

Wu, Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Wuttig, M.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Xu, Y.

Yan, S.

Yang, J.

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Yin, X.

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Yu, P.

Yu, S.

Zhang, J.

R. Li, Z. Guo, W. Wang, J. Zhang, K. Zhou, J. Liu, and J. Gao, “Arbitrary focusing lens by holographic metasurface,” Photon. Res. 3, 252–255 (2015).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
[Crossref]

Zhang, Q.

Zhang, W.

Zhang, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Zhao, R.

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Zheng, X.

Zhou, J.

Zhou, K.

Zhou, L.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

Zhu, W.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Zhu, Z.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

X. Liu, Y. Xu, Z. Zhu, S. Yu, C. Guan, and J. Shi, “Manipulating wave polarization by twisted plasmonic metamaterials,” Opt. Mater. Express 4, 1003–1010 (2014).
[Crossref]

Zhuang, S.

ACS Nano (1)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

ACS Photon. (2)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photon. 2, 216–227 (2015).
[Crossref]

M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photon. 3, 578–583 (2016).
[Crossref]

Adv. Mater. (2)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Chem. Biol. Drug Des. (1)

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74, 101–120 (2009).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315–1320 (2005).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

J. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. 11, 074009 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

J. Phys. Chem. C (1)

W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” J. Phys. Chem. C 120, 12713–12722 (2016).
[Crossref]

Nano Lett. (10)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).
[Crossref]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12, 5202–5206 (2012).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
[Crossref]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15, 4255–4260 (2015).
[Crossref]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref]

N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme,” Nano Lett. 14, 78–82 (2013).
[Crossref]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref]

Nat. Commun. (2)

C. Wu, N. Arju, G. Kelp, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Nat. Mater. (3)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (5)

Photon. Nanostr. Fundam. Appl. (1)

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, and M. Wegener, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostr. Fundam. Appl. 8, 1–6 (2010).
[Crossref]

Photon. Res. (5)

Phys. Rev. B (4)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[Crossref]

N. Meinzer, E. Hendry, and W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88, 041407 (2013).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

Phys. Rev. E (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Phys. Rev. Lett. (4)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98, 153905 (2007).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Phys. Rev. X (1)

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5, 041027 (2015).
[Crossref]

Sci. Rep. (1)

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Science (3)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

Other (4)

M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).

CST Computer Simulation Technology AG, “CST MICROWAVE STUDIO,” http://www.cst.com/Products/CSTMWS .

E. Plum, “Chirality and Metamaterials,” Doctoral dissertation (University of Southampton, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of graphene-integrated MDM-CHA. Thicknesses of the Al2O3, Al, GaAs spacer, and graphene are 3, 17, 10, and 0.5 nm, respectively. (b) Illustration of the chiral triad composed of wave vector (k), normal vector (n), rotation angle φ in the xy plane, and different lattice vectors (a or b), marked in black. (c) Illustration of the rectangular lattice pattern of CHA, where Lx=1600  nm, Ly=1000  nm and r=310  nm. (d) Effective permittivity of graphene ϵeff for Fermi energies of graphene (EF) of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0 eV.

Fig. 2.
Fig. 2.

Spectra of (a) t++ and t, (b) t+, t+ and CCD of the achiral metasurface (Lx=1600  nm, Ly=1000  nm) integrated with the graphene sheet (EF=0.1  eV) under θ=45°, φ=15°. (c) CCD spectra for EF=0.4, 0.6, 0.8, and 1.0 eV under θ=45°, φ=15°. (d) Positions of CCD resonant dip as a function of EF at θ=45°, φ=15°.

Fig. 3.
Fig. 3.

CCD spectra for the (a) different φ with θ=45°, (b) different θ with φ=15°, where Lx=1600  nm, Ly=1000  nm, and EF=0.1  eV. (c) 2D diagram of CCD against θ and φ at an operating wavelength of 1990 nm with a step of 1°. (d) CCD spectra for different Td at θ=45° and φ=15°. (e) CCD spectra for different TAl at θ=45° and φ=15°.

Fig. 4.
Fig. 4.

Representation of the dispersion relation of the Al2O3/Al/GaAs/Al/Al2O3 multilayer (left column), and the CCD spectra of the CHA penetrating through the Al2O3/Al/GaAs/Al/Al2O3 multilayer at θ=45°, φ=15° (right column), where both of the structures are covered by a graphene film, respectively, for (a) EF=0.1  eV, (b) EF=0.4  eV, (c) EF=0.6  eV, (d) EF=0.8  eV, and (e) EF=1.0  eV.

Fig. 5.
Fig. 5.

(a)–(f) Total time-averaged E-field distributions at the interface between the bottom Al2O3 layer and air during light propagation through the achiral metasurface at EF=0.1, 0.4, 0.6, 0.8, and 1.0 eV. The response to LCP and RCP incidence is displayed on the left and right, respectively. The incident total E-field has an amplitude of 1 V/m. The E-field distributions on the bottom Al2O3-air interface are normalized to the maximum intensity of the E-field at θ=φ=0°. (a) Total E-field distributions under the perpendicular incidence (θ=φ=0°), showing patterns with mirror symmetry for the two circular polarizations at λ=1990  nm and EF=0.1  eV. The asymmetric E-field distributions for oblique incidence (θ=45°, φ=15°) at (b) λ=1990  nm and EF=0.1  eV, (c) λ=1996  nm and EF=0.4  eV, (d) λ=2034  nm and EF=0.6  eV, (e) λ=2074  nm and EF=0.8  eV, and (f) λ=2124  nm and EF=1.0  eV.

Fig. 6.
Fig. 6.

(a) C/CCPL spectra in the aperture (red spot in the left inset) for EF=0.1, 0.4, 0.6, 0.8, and 1.0 eV under an LCP incidence with θ=45°, φ=15°. Right inset shows a vertical cross section of the circular hole containing a chiral molecule. (b)–(f) Distributions of |E/E0|, |H/H0|, and C/CCPL at an interface between the bottom Al2O3 layer and air under an LCP incidence with θ=45°, φ=15° for (b) λ=1990  nm and EF=0.1  eV, (c) λ=1996  nm and EF=0.4  eV, (d) λ=2034  nm and EF=0.6  eV, (e) λ=2074  nm and EF=0.8  eV, and (f) λ=2124  nm and EF=1.0  eV.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|kspp|=|kx+Gi,j|=|k0sinθ+iGx+jGx+jGy|,
C=ϵ0ω2Im[E*·H],

Metrics