Abstract

We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of 200 nm and about 370  nm away from the nanohole; thus, a stable 3D atom trapping independent of the surface potential is demonstrated. The effective trap depth is more than 1 mK when the optical power of trapping light is only about 0.5 mW, while the atom scattering rate is merely about 3.31  s1, and the trap lifetime is about 800 s. This compact plasmonic structure provides high uniformity of trap depths and a two-layer array of atom nanotraps, which should have important applications in the manipulation of cold atoms and collective resonance fluorescence.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom

Xiaodong He, Shi Yu, Peng Xu, Jin Wang, and Mingsheng Zhan
Opt. Express 20(4) 3711-3724 (2012)

Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart
Opt. Express 23(2) 1638-1650 (2015)

Trapping a single atom in a blue detuned optical bottle beam trap

Peng Xu, Xiaodong He, Jin Wang, and Mingsheng Zhan
Opt. Lett. 35(13) 2164-2166 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, W. D. Phillips, and F. Strumia, Laser Manipulation of Atoms and Ions (North Holland, 1991).
  2. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
    [Crossref]
  3. J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
    [Crossref]
  4. J. P. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1–116 (2006).
    [Crossref]
  5. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).
  6. S. Kato, S. Chonan, and T. Aoki, “High-numerical-aperture microlensed tip on an air-clad optical fiber,” Opt. Lett. 39, 773–775 (2014).
    [Crossref]
  7. P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
    [Crossref]
  8. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010).
    [Crossref]
  9. M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
    [Crossref]
  10. P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146, 119–123 (1998).
    [Crossref]
  11. N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
    [Crossref]
  12. M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
    [Crossref]
  13. T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
    [Crossref]
  14. E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref]
  15. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
    [Crossref]
  16. N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
    [Crossref]
  17. C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
    [Crossref]
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  19. Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
    [Crossref]
  20. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [Crossref]
  21. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
    [Crossref]
  22. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [Crossref]
  23. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  24. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  25. D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
    [Crossref]
  26. B. Murphy and L. V. Hau, “Electro-optical nanotraps for neutral atoms,” Phys. Rev. Lett. 102, 033003 (2009).
    [Crossref]
  27. M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
    [Crossref]
  28. A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
    [Crossref]
  29. H. Tamura, T. Unakami, J. He, Y. Miyamoto, and K. Nakagawa, “Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements,” Opt. Express 24, 8132–8141 (2016).
    [Crossref]
  30. T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
    [Crossref]
  31. C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
    [Crossref]
  32. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
    [Crossref]
  33. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  34. F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
    [Crossref]
  35. M. Luo and Q. Liu, “Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials,” J. Opt. Soc. Am. B 28, 629–636 (2011).
    [Crossref]
  36. M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
    [Crossref]
  37. C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
    [Crossref]
  38. D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
    [Crossref]
  39. C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
    [Crossref]
  40. J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
    [Crossref]
  41. Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
    [Crossref]
  42. F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
    [Crossref]
  43. H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
    [Crossref]

2017 (3)

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
[Crossref]

2016 (3)

H. Tamura, T. Unakami, J. He, Y. Miyamoto, and K. Nakagawa, “Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements,” Opt. Express 24, 8132–8141 (2016).
[Crossref]

T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

2015 (2)

N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
[Crossref]

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

2014 (4)

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

S. Kato, S. Chonan, and T. Aoki, “High-numerical-aperture microlensed tip on an air-clad optical fiber,” Opt. Lett. 39, 773–775 (2014).
[Crossref]

2013 (1)

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

2012 (3)

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

2011 (2)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

M. Luo and Q. Liu, “Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials,” J. Opt. Soc. Am. B 28, 629–636 (2011).
[Crossref]

2010 (2)

P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010).
[Crossref]

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

2009 (3)

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

B. Murphy and L. V. Hau, “Electro-optical nanotraps for neutral atoms,” Phys. Rev. Lett. 102, 033003 (2009).
[Crossref]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[Crossref]

2008 (1)

T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

2007 (3)

C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
[Crossref]

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2006 (2)

J. P. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1–116 (2006).
[Crossref]

H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
[Crossref]

2005 (3)

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

2002 (1)

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

2001 (1)

C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
[Crossref]

2000 (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146, 119–123 (1998).
[Crossref]

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Alton, D.

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Aoki, T.

Arimondo, E.

E. Arimondo, W. D. Phillips, and F. Strumia, Laser Manipulation of Atoms and Ions (North Holland, 1991).

Arnob, M.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Babiker, M.

C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
[Crossref]

Bandi, T. N.

T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Bender, H.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Bennett, C. R.

C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
[Crossref]

Bryant, G.

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Burke, J. P.

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Chai, Z.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

Chandra, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Chang, D. E.

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Chen, J.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Chen, J. Y.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Choi, K.

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Chonan, S.

Chormaic, S. N.

T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
[Crossref]

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, S.

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Cirac, J.

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Corzo, N. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Daly, M.

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Deasy, K.

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

Engeser, B.

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

Feist, J.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Fleischer, M.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Foot, C. J.

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146, 119–123 (1998).
[Crossref]

Fortagh, J.

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[Crossref]

Gan, F. Y.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Gao, H.

H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
[Crossref]

Garcia-Segundo, C.

C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
[Crossref]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gheewala, M.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Goban, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Gokhroo, V.

T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
[Crossref]

Gong, Q.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Gonzalez, A.

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

Gouraud, B.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Grimm, R.

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).

Gullans, M.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Hammes, M.

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[Crossref]

Hau, L. V.

B. Murphy and L. V. Hau, “Electro-optical nanotraps for neutral atoms,” Phys. Rev. Lett. 102, 033003 (2009).
[Crossref]

He, J.

He, X.

Henzie, J.

H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
[Crossref]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Hu, X.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

Hung, C.

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

Isenhower, L.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Julienne, P. S.

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Kato, S.

Kern, D.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Kimble, H.

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

Kimble, H. J.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

kirk, J. B.

C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
[Crossref]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Kupriyanov, D. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Lacroute, C.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Laurat, J.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Lee, T.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, C.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Li, G.

P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
[Crossref]

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Li, H.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Li, Z. Y.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Lichtman, M.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Lin, L.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

Liu, Q.

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Lukin, M. D.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Luo, M.

Maller, K.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Minogin, V. G.

T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Miyamoto, Y.

Motwani, J. Q. P.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Murphy, B.

B. Murphy and L. V. Hau, “Electro-optical nanotraps for neutral atoms,” Phys. Rev. Lett. 102, 033003 (2009).
[Crossref]

Nagerl, H. C.

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

Nakagawa, K.

Nieddu, T.

T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
[Crossref]

Odom, T.

H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
[Crossref]

Oller, P.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).

Park, H.

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Paterson, A.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Phelan, C. F.

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

Phillips, W. D.

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[Crossref]

E. Arimondo, W. D. Phillips, and F. Strumia, Laser Manipulation of Atoms and Ions (North Holland, 1991).

Phuong Lan, N. T.

N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
[Crossref]

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Piotrowicz, M. J.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Pototschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Raja, B.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Reitz, D.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Roberts, A.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[Crossref]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Rychtarik, D.

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

Saffman, M.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Sague, G.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Sheremet, A. S.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Shih, W.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Sinha, K.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

Slama, S.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Stehle, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Stern, N.

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Strumia, F.

E. Arimondo, W. D. Phillips, and F. Strumia, Laser Manipulation of Atoms and Ions (North Holland, 1991).

Strych, U.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Sun, C.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Sun, P.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Tamura, H.

Taylor, J. M.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Thompsin, J. D.

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Thompson, J.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Thuy Nga, D. T.

N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
[Crossref]

Tiecke, T.

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Truong, V. G.

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

Unakami, T.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Viet, N. A.

N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
[Crossref]

Vuletic, V.

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Wang, J.

Wang, Y.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).

Wiley, B.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Williams, C. J.

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Willson, R.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wolfe, J.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Xia, Y. N.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Xiong, Y. J.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Xu, P.

Yan, H.

C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
[Crossref]

Yang, H.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

Yin, J. P.

J. P. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1–116 (2006).
[Crossref]

Yin, Y. D.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

Zemanek, P.

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146, 119–123 (1998).
[Crossref]

Zeng, J.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Zhan, M.

Zhan, M. S.

C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
[Crossref]

Zhang, G.

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Zhang, P. F.

P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
[Crossref]

Zhang, S.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Zhang, T. C.

P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
[Crossref]

Zhang, X.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Zhao, F.

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Zibrov, A. S.

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Zimmermann, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[Crossref]

Zoller, P.

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 1–39 (2000).

Adv. Opt. Mater. (1)

F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5, 1600545 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (1)

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[Crossref]

J. Opt. (1)

T. Nieddu, V. Gokhroo, and S. N. Chormaic, “Optical nanofibers and neutral atoms,” J. Opt. 18, 053001 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

P. F. Zhang, G. Li, and T. C. Zhang, “Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip,” J. Phys. B 50, 045005 (2017).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

J. Phys. Conf. Ser. (1)

N. T. Phuong Lan, D. T. Thuy Nga, and N. A. Viet, “Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams,” J. Phys. Conf. Ser. 627, 012017 (2015).
[Crossref]

Nano Lett. (3)

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5, 1237–1242 (2005).
[Crossref]

H. Gao, J. Henzie, and T. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006).
[Crossref]

Nanophotonics (1)

Z. Chai, X. Hu, H. Yang, and Q. Gong, “Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite,” Nanophotonics 6, 329–339 (2017).
[Crossref]

Nanoscale (1)

F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, and W. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6, 8199–8207 (2014).
[Crossref]

Nat. Commun. (1)

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref]

Nat. Photonics (2)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, and H. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

New J. Phys. (2)

M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, and S. N. Chormaic, “Nanostructured optical nanofibers for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Opt. Commun. (1)

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146, 119–123 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rep. (1)

J. P. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1–116 (2006).
[Crossref]

Phys. Rev. A (5)

J. P. Burke, S. Chu, G. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguide,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

T. N. Bandi, V. G. Minogin, and S. N. Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

C. Garcia-Segundo, H. Yan, and M. S. Zhan, “Atom trap with surface plasmon and evanescent field,” Phys. Rev. A 75, 030902 (2007).
[Crossref]

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

C. R. Bennett, J. B. kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (8)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103, 123004 (2009).
[Crossref]

B. Murphy and L. V. Hau, “Electro-optical nanotraps for neutral atoms,” Phys. Rev. Lett. 102, 033003 (2009).
[Crossref]

M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, “Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions,” Phys. Rev. Lett. 90, 173001 (2003).
[Crossref]

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, and T. Thiele, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Rev. Mod. Phys. (2)

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[Crossref]

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[Crossref]

Other (1)

E. Arimondo, W. D. Phillips, and F. Strumia, Laser Manipulation of Atoms and Ions (North Holland, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the array of nanoholes in a metallic film. Inset shows the unit cell of the presented nanohole arrays and the geometrical parameter symbols. (b) Simulation results of the normalized zero-order transmission spectrum. (c) Field distribution of |E| in the nanohole at the air–gold interface when a 760 nm laser illuminates from the z direction.

Fig. 2.
Fig. 2.

(a) Field distributions of |E| in the xz plane when y is 0 nm. (b) Normalized intensity distributions of |E|2 along the dark dashed line in (a).

Fig. 3.
Fig. 3.

(a) Calculated total potential along the dark dashed line in Fig. 2(a). (b) Potential distributions for point P in the xy plane. Ux and Utotx represent the optical dipole potential and the total potential along the x direction, respectively. The incident optical power P0=1  mW.

Fig. 4.
Fig. 4.

(a) Contour plot of a trapping total potential in the xy plane at z=372  nm for a unit cell. (b) Periodic arrays.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Utot=Uopt+UCP,
Uopt=14α|E|2.
α=6πϵ0c3k,miAki(2Jk+1)ωik2(ωik2ω2)(Ji1JkmiPm).
UCP=K4·[d3(d+l)]1,
Γsc=ΓΔUtot.
Γsc=(Γ1/23Δ1/2+2Γ3/23Δ3/2)Utot,
τc=Ueff2ErΓsc,

Metrics