Abstract

In this study, a full-color emission red–green–blue (RGB) quantum-dot (QD)-based micro-light-emitting-diode (micro-LED) array with the reduced optical cross-talk effect by a photoresist mold has been demonstrated. The UV micro-LED array is used as an efficient excitation source for the QDs. The aerosol jet technique provides a narrow linewidth on the micrometer scale for a precise jet of QDs on the micro-LEDs. To reduce the optical cross-talk effect, a simple lithography method and photoresist are used to fabricate the mold, which consists of a window for QD jetting and a blocking wall for cross-talk reduction. The cross-talk effect of the well-confined QDs in the window is confirmed by a fluorescence microscope, which shows clear separation between QD pixels. A distributed Bragg reflector is covered on the micro-LED array and the QDs’ jetted mold to further increase the reuse of UV light. The enhanced light emission of the QDs is 5%, 32%, and 23% for blue, green, and red QDs, respectively.

© 2017 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
    [Crossref]
  2. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21, 1203–1208 (2013).
    [Crossref]
  3. Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
    [Crossref]
  4. J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.
  5. C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
    [Crossref]
  6. C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20, 16218–16223 (2012).
    [Crossref]
  7. F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.
  8. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20, 4564–4573 (2012).
    [Crossref]
  9. W.-Y. Lin, C.-Y. Chen, H.-H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, and H.-W. Wu, “10m/500Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012).
    [Crossref]
  10. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
    [Crossref]
  11. D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
    [Crossref]
  12. I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
    [Crossref]
  13. C.-C. Hsieh, Y.-H. Li, and C.-C. Hung, “Modular design of the LED vehicle projector headlamp system,” Appl. Opt. 52, 5221–5229 (2013).
    [Crossref]
  14. C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
    [Crossref]
  15. C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
    [Crossref]
  16. D. Cho, W.-S. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated XY channel drivers for LCD TVs,” J. Display Technol. 7, 29–35 (2011).
    [Crossref]
  17. Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
    [Crossref]
  18. H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron. 56, 2054–2060 (2010).
  19. H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
    [Crossref]
  20. J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
    [Crossref]
  21. K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
    [Crossref]
  22. H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
    [Crossref]
  23. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23, 23680–23693 (2015).
    [Crossref]
  24. A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
    [Crossref]
  25. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
    [Crossref]
  26. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
    [Crossref]
  27. S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).
  28. I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.
  29. H. K. H. Choy, “Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers,” in IEEE International Conference on Semiconductor Electronics (Citeseer, 1998).
  30. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
    [Crossref]
  31. S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
    [Crossref]

2016 (2)

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

2015 (5)

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23, 23680–23693 (2015).
[Crossref]

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

2014 (2)

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

2013 (2)

2012 (5)

2011 (2)

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

D. Cho, W.-S. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated XY channel drivers for LCD TVs,” J. Display Technol. 7, 29–35 (2011).
[Crossref]

2010 (1)

H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron. 56, 2054–2060 (2010).

2009 (4)

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

2008 (1)

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

2007 (1)

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

1997 (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Andoh, M.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

Bakajin, O.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Büttner, A.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Cao, Y.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Chang, C.-H.

Chen, C.-C.

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

Chen, C.-W.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Chen, C.-Y.

Chen, H.

Chen, H. C.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Chen, H.-M.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Chen, J.

Chen, K. J.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Chen, K.-J.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Chen, T. M.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Chen, T.-M.

Chen, W.

Chen, Y. H.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Chen, Y.-M.

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

Chen, Z.-Y.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Cheng, B. S.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Chi, N.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21, 1203–1208 (2013).
[Crossref]

Chien, S. H.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Chiu, H.-J.

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Cho, D.

Cho, H.

H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron. 56, 2054–2060 (2010).

Chong, W.-C.

Chow, C.

C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20, 16218–16223 (2012).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

Choy, H. K. H.

H. K. H. Choy, “Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers,” in IEEE International Conference on Semiconductor Electronics (Citeseer, 1998).

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Deegan, R. D.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Dong, Y.

Dupont, T. F.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Ferreira, R.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Friedman, D.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

García, I.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

Geisz, J.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Habel, K.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Han, H. V.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Han, H.-V.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Harada, T.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

He, Z.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Henderson, R. K.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Herrnsdorf, J.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Hong, M.-H.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

Hsieh, C.-C.

Hsu, S. C.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Hsu, Y. J.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Huang, H.-M.

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Huang, K.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Huang, P.

Huber, G.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Hung, C.-C.

Ishida, H.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Jiang, C.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Kagawa, K.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

Kaneko, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Kao, T. S.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

Kawahito, S.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Kobayashi, A.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

Kottke, C.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Kuo, H. C.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Kurtz, S.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

Kwon, O.-K.

H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron. 56, 2054–2060 (2010).

Langer, K.-D.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Lau, K.-M.

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Lee, P.-T.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

Lee, T.-P.

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Li, J.-R.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Li, Y.-H.

Lin, C. C.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Lin, C.-C.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Lin, C.-T.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Lin, H.-C.

Lin, H.-Y.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, “Resonant-enhanced full-color emission of quantum-dot-based micro-LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Lin, S. L.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Lin, W.-Y.

Lin, Y.-P.

Liu, B.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Liu, Y.

C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20, 16218–16223 (2012).
[Crossref]

C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20, 16218–16223 (2012).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

Lo, Y.-K.

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

Lu, H.-H.

Luo, Z.

Massoubre, D.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

McKendry, J. J.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Moon, G. W.

Mou, S.-C.

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Nagel, S. R.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

Nerreter, S.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Oh, W.-S.

Oh, Y.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Oishi, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Olson, J.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

Pai, K.-J.

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

Peng, J.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Shang, H.

Shi, J.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

Shih, M. H.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Shiina, Y.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Steiner, M.

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

Suzuki, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Takai, I.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

Takehira, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Tao, L.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

Tobita, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Tsai, C. H.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Tsai, H. H.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Tsai, J.-R.

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

Tsai, K. A.

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Tsang, H.

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Tu, Z. Y.

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

Underwood, I.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Vucic, J.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Walewski, J. W.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Wang, J.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Wang, L.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Wang, S.-W.

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

Wang, Y.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21, 1203–1208 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21, 1203–1208 (2013).
[Crossref]

Wang, Z.

Watson, S.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Wei, C.-C.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Witten, T. A.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Won, E. T.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Woods, A. J.

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
[Crossref]

Wu, C.-Y.

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

Wu, F.-M.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

Wu, H.-W.

Wu, K.-H.

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

Wu, S.-T.

Wu, T.-F.

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

Xie, E.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Yasutomi, K.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

Yeh, C.

C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20, 16218–16223 (2012).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

Yoshihara, T.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Yu, C.

Yu, J.

Yu, P.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Zhang, S.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

Zhong, W.-D.

Zhong, Z.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Zhu, R.

Zou, J.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Zuhdi, A. M.

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).
[Crossref]

Adv. Funct. Mater. (1)

K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, and C. H. Tsai, “Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method,” Adv. Funct. Mater. 22, 5138–5143 (2012).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

C. Chow, C. Yeh, Y. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to main electricity network,” Electron. Lett. 47, 867–868 (2011).
[Crossref]

IEEE Photon. J. (2)

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J. 6, 1–14 (2014).
[Crossref]

S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo, and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photon. J. 7, 1–7 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (3)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, and G. Faulkner, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride micro-LED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photon. Technol. Lett. 27, 197–200 (2015).
[Crossref]

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron. 56, 2054–2060 (2010).

IEEE Trans. Electron Devices (1)

J. Herrnsdorf, J. J. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, and S. Watson, “Active-matrix GaN micro light-emitting diode display with unprecedented brightness,” IEEE Trans. Electron Devices 62, 1918–1925 (2015).
[Crossref]

IEEE Trans. Ind. Electron. (3)

H.-J. Chiu, Y.-K. Lo, T.-P. Lee, S.-C. Mou, and H.-M. Huang, “Design of an RGB LED backlight circuit for liquid crystal display panels,” IEEE Trans. Ind. Electron. 56, 2793–2795 (2009).
[Crossref]

Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron. 56, 4862–4871 (2009).
[Crossref]

C.-Y. Wu, T.-F. Wu, J.-R. Tsai, Y.-M. Chen, and C.-C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron. 55, 3791–3800 (2008).
[Crossref]

IEEE Trans. Power Electron. (1)

C.-C. Chen, C.-Y. Wu, Y.-M. Chen, and T.-F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron. 22, 919–925 (2007).
[Crossref]

J. Display Technol. (1)

J. Electron. Imaging (1)

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
[Crossref]

Nature (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827–829 (1997).
[Crossref]

Opt. Express (6)

Phys. Chem. Chem. Phys. (1)

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
[Crossref]

Sci. Rep. (1)

S.-W. Wang, H.-Y. Lin, C.-C. Lin, T. S. Kao, K.-J. Chen, H.-V. Han, J.-R. Li, P.-T. Lee, H.-M. Chen, and M.-H. Hong, “Pulsed-laser micropatterned quantum-dot array for white light source,” Sci. Rep. 6, 23563 (2016).

Other (4)

I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, and S. Kurtz, “Design of semiconductor-based back reflectors for high Voc monolithic multijunction solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 002042.

H. K. H. Choy, “Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers,” in IEEE International Conference on Semiconductor Electronics (Citeseer, 1998).

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G. 4.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThH3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the AJ system. (b) The PL emission spectra of QDs with emission wavelengths of 450, 535, and 630 nm.

Fig. 2.
Fig. 2.

AJ red QD NCTU pattern observed by (a) optical microscopy, (b) fluorescence microscopy, and (c) the measured height of the deposited red QD by laser microscopy.

Fig. 3.
Fig. 3.

(a) Optical microscopy image of PR square windows with the pixel size of 35  μm×35  μm, where the pitch is about 40 μm. (b) The laser scanner microscope image of the PR square wall, where the height of the wall is 11.46 μm.

Fig. 4.
Fig. 4.

Process flow of the full-color microdisplay. (a) The structure of the micro-LED arrays. (b) Aligning the mold to the UV micro-LED array. (c)–(e) Consequently jetting the RGB QDs inside the mold window to form the full-color pixels.

Fig. 5.
Fig. 5.

Alignment approach. (a) The OM image focused on the micro-LED array and the defined alignment cross in a sticking position. Parts (b) and (c) show the OM image focused on the PR mold and the location moved to align the alignment cross, respectively.

Fig. 6.
Fig. 6.

(a) Microscope image of the full-color micro-LED after jetted QDs in the PR mold. (b) The RGB pixel array observed by fluorescence microscopy. (c) The fluorescence microscopy image of the jetted QD pixels without the PR mold.

Fig. 7.
Fig. 7.

(a) Top-view image of the micro-LED layout with the pitch of 40.2 μm defined as the intended channel. (b) Our previous work by the QD lines without the PR mold for the microdisplay, which caused cross talk. (c) The QD droplets jetted in the PR mold to confine the size and resolve the cross-talk effect.

Fig. 8.
Fig. 8.

(a) Mechanism of the coffee ring effect due to the QDs’ outward flow during evaporation. (b) Mechanism of the solution to reduce the coffee ring effect by the PR mold. (c) The OM image denoted that the coffee ring effect can be observed when the QD drops were jetted on the GaN substrate. (d)The PR square can confine the QD drops in the hole and resolve the coffee ring effect.

Fig. 9.
Fig. 9.

(a) Reflectance spectrum of 17.5 pairs of the HfO2/SiO2 DBR. (b) The measured EL spectrum of jetted RGB QDs by AJ on a UV micro-LED array, where the black and red lines represent the devices with and without the DBR, respectively.

Fig. 10.
Fig. 10.

(a) A row of the RGB pixel has been driven individual addressable. (b) The full-color micro-LED in full operation and with the DBR layer covered.

Fig. 11.
Fig. 11.

Images of the full-color microdisplay in operation to individually drive the (a) single blue pixel, (b) single green pixel, and (c) single red pixel.

Tables (1)

Tables Icon

Table 1. Parameters of the AJ Printing Technique for Different QDs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk(%)=LeakageIntended channel×100%,
d=λ/(4ncosθ),
R=|r|2=|nsubn12(n2n1)2m1nsubn12(n2n1)2m+1|2,
Visible photonsUV photons=λhc[IemiQD(λ)IemiUV based(λ)]λhc[IexcUV based(λ)IexcQD(λ)],

Metrics