Abstract

We report the investigation on the performance of an amplification assisted difference frequency generation (AA-DFG) system driven by pulsed pump and continuous-wave primary signal lasers. A monolithic tandem lithium niobate superlattice was employed as the nonlinear crystal with a uniform grating section for the DFG process, followed by a chirp section for the optical parametric amplification process. The impacts of pump pulse shape, primary signal power, input beam diameter, and crystal structure on the pump-to-idler conversion efficiency of the AA-DFG system were comprehensively studied by numerically solving the coupled wave equations. It is concluded that square pump pulse and high primary signal power are beneficial to high pump-to-idler conversion efficiency. In addition, tighter input beam focus and smaller DFG length proportion could redeem the reduction in conversion efficiency resulting from wider acceptance bandwidths for the input lasers. We believe that such systems combining the merits of high stability inherited from cavity-free configuration and high efficiency attributed from the cascaded nonlinear conversion should be of great interest to a wide community, especially when the pulse shaping technique is incorporated.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Temperature insensitive, high-power cascaded optical parametric oscillator based on an aperiodically poled lithium niobate crystal

Tao Chen, Peipei Jiang, Bo Wu, Rong Shu, Chengzhi Hu, and Yonghang Shen
Opt. Express 22(22) 26900-26907 (2014)

Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip

Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu
Opt. Express 19(18) 17500-17505 (2011)

Mid-infrared (5–12-µm) and limited (5.5–8.5-µm) single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2

Sajjad Haidar, Koichiro Nakamura, Eiji Niwa, Katashi Masumoto, and Hiromasa Ito
Appl. Opt. 38(9) 1798-1801 (1999)

References

  • View by:
  • |
  • |
  • |

  1. A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
    [Crossref]
  2. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
    [Crossref]
  3. B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989, 598902 (2005).
    [Crossref]
  4. W. Tian, Z. Wang, J. Zhu, and Z. Wei, “Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate,” Opt. Express 24, 29814–29821 (2016).
    [Crossref]
  5. K. Wei, X. Zhou, and X. Lai, “3.8-μm mid-infrared laser quasi-synchronously pumped by a MOPA structured picosecond Yb fiber amplifier with multi-pulse operation,” IEEE Photon. J. 8, 1503905 (2016).
    [Crossref]
  6. T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
    [Crossref]
  7. L. Xu, H. Y. Chan, S. U. Alam, D. J. Richardson, and D. P. Shepherd, “Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity,” Opt. Lett. 40, 3288–3291 (2015).
    [Crossref]
  8. S. C. Kumar, J. Wei, J. Debray, V. Kemlin, B. Boulanger, H. Ishizuki, T. Taira, and M. Ebrahim-Zadeh, “High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5% MgO: PPLN,” Opt. Lett. 40, 3897–3900 (2015).
    [Crossref]
  9. P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
    [Crossref]
  10. Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24, 21684–21692 (2016).
    [Crossref]
  11. G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
    [Crossref]
  12. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
    [Crossref]
  13. Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu, “Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip,” Opt. Express 19, 17500–17505 (2011).
    [Crossref]
  14. T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
    [Crossref]
  15. Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106, 267–270 (2012).
    [Crossref]
  16. S. Sharabi, G. Porat, and A. Arie, “Improved idler beam quality via simultaneous parametric oscillation and signal-to-idler conversion,” Opt. Lett. 39, 2152–2155 (2014).
    [Crossref]
  17. Z. G. Figen, O. Aytür, and O. Arıkan, “Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings,” Appl. Opt. 55, 2404–2412 (2016).
    [Crossref]
  18. O. P. Naraniya, M. R. Shenoy, and K. Thyagarajan, “Efficient scheme for mid-infrared generation using simultaneous optical parametric oscillators and DFG processes in a double-pass pump configuration,” Appl. Opt. 54, 7234–7239 (2015).
    [Crossref]
  19. S. Li, P. Ju, Y. Liu, X. Jiang, R. Ni, G. Zhao, X. Lv, and S. Zhu, “Efficiency-enhanced picosecond mid-infrared optical parametric downconversion based on a cascaded optical superlattice,” Chin. Opt. Lett. 14, 041402 (2016).
    [Crossref]
  20. A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010).
    [Crossref]
  21. J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
    [Crossref]
  22. Z. G. Figen, “Seeded optical parametric generator with efficiency-enhanced mid-wave infrared beam output,” J. Mod. Opt. 61, 1269–1281 (2014).
    [Crossref]
  23. A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
    [Crossref]
  24. T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
    [Crossref]
  25. Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
    [Crossref]
  26. L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.
  27. D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
    [Crossref]
  28. C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
    [Crossref]
  29. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]

2017 (2)

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

2016 (6)

2015 (4)

2014 (2)

Z. G. Figen, “Seeded optical parametric generator with efficiency-enhanced mid-wave infrared beam output,” J. Mod. Opt. 61, 1269–1281 (2014).
[Crossref]

S. Sharabi, G. Porat, and A. Arie, “Improved idler beam quality via simultaneous parametric oscillation and signal-to-idler conversion,” Opt. Lett. 39, 2152–2155 (2014).
[Crossref]

2013 (2)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

2012 (2)

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106, 267–270 (2012).
[Crossref]

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

2011 (2)

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu, “Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip,” Opt. Express 19, 17500–17505 (2011).
[Crossref]

2010 (2)

2009 (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2007 (1)

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
[Crossref]

2005 (1)

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989, 598902 (2005).
[Crossref]

2001 (1)

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

1996 (1)

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[Crossref]

Alam, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Alam, S. U.

L. Xu, H. Y. Chan, S. U. Alam, D. J. Richardson, and D. P. Shepherd, “Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity,” Opt. Lett. 40, 3288–3291 (2015).
[Crossref]

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Aoust, G.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Arie, A.

Arikan, O.

Armougom, J.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Arslanov, D. D.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Aytür, O.

Boulanger, B.

Cadiou, E.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Cai, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Chan, H. Y.

Chen, K. K.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Chen, T.

T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
[Crossref]

T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
[Crossref]

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

Cristescu, S. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Cui, S.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Debray, J.

Descloux, D.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Dherbecourt, J.-B.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Drag, C.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

Ebrahim-Zadeh, M.

Feng, Y.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Figen, Z. G.

Z. G. Figen, O. Aytür, and O. Arıkan, “Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings,” Appl. Opt. 55, 2404–2412 (2016).
[Crossref]

Z. G. Figen, “Seeded optical parametric generator with efficiency-enhanced mid-wave infrared beam output,” J. Mod. Opt. 61, 1269–1281 (2014).
[Crossref]

Flannagan, J. C.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Geddes, V.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Godard, A.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010).
[Crossref]

Gorju, G.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Harren, F. J.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Haus, J. W.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
[Crossref]

Hayes, J. R.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Hu, X. P.

Huang, Y.

T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
[Crossref]

Ingram, S.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Ishizuki, H.

Jeandron, M.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

Jiang, H.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Jiang, P.

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Jiang, X.

Ju, P.

Kemlin, V.

Koch, K.

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[Crossref]

Kong, W.

T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
[Crossref]

Kumar, S. C.

Lai, X.

K. Wei, X. Zhou, and X. Lai, “3.8-μm mid-infrared laser quasi-synchronously pumped by a MOPA structured picosecond Yb fiber amplifier with multi-pulse operation,” IEEE Photon. J. 8, 1503905 (2016).
[Crossref]

Lefebvre, M.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010).
[Crossref]

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

Li, S.

Li, X.

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24, 21684–21692 (2016).
[Crossref]

Lin, D.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Ling, W.

Liu, H.

T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
[Crossref]

T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
[Crossref]

Liu, Y.

Liu, Y. H.

Lu, J.

Lv, X.

Lv, X. J.

Malinowski, A.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Mandon, J.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Melkonian, J.-M.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Michel, A. M.

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

Michel, A.-M.

Molocher, B.

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989, 598902 (2005).
[Crossref]

Moore, G. T.

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[Crossref]

Naraniya, O. P.

Ni, R.

Nilsson, J.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Norman, S.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Pan, W.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Pandey, A.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
[Crossref]

Péalat, M.

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010).
[Crossref]

Persijn, S. T.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Porat, G.

Powers, P. E.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
[Crossref]

Raybaut, M.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010).
[Crossref]

Ribet, I.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

Richardson, D. J.

L. Xu, H. Y. Chan, S. U. Alam, D. J. Richardson, and D. P. Shepherd, “Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity,” Opt. Lett. 40, 3288–3291 (2015).
[Crossref]

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Rosencher, E.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Schmid, T.

Shang, Y.

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24, 21684–21692 (2016).
[Crossref]

Sharabi, S.

Shen, M.

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

Shen, Y.

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Shenoy, M. R.

Shepherd, D. P.

Shu, R.

T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
[Crossref]

T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
[Crossref]

Spunei, M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Taira, T.

Thyagarajan, K.

Tian, W.

Walter, G.

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

Wang, P.

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24, 21684–21692 (2016).
[Crossref]

Wang, Z.

Wei, J.

Wei, K.

K. Wei, X. Zhou, and X. Lai, “3.8-μm mid-infrared laser quasi-synchronously pumped by a MOPA structured picosecond Yb fiber amplifier with multi-pulse operation,” IEEE Photon. J. 8, 1503905 (2016).
[Crossref]

Wei, Z.

Wu, B.

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

Xie, Z. D.

Xu, J.

Xu, L.

Xu, X.

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24, 21684–21692 (2016).
[Crossref]

Yang, D.

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

Yang, X.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Yuan, Y.

Zhang, L.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Zhao, G.

Zhao, L. N.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106, 267–270 (2012).
[Crossref]

Zhou, P.

Zhou, X.

K. Wei, X. Zhou, and X. Lai, “3.8-μm mid-infrared laser quasi-synchronously pumped by a MOPA structured picosecond Yb fiber amplifier with multi-pulse operation,” IEEE Photon. J. 8, 1503905 (2016).
[Crossref]

Zhu, J.

Zhu, S.

Zhu, S. N.

Appl. Opt. (2)

Appl. Phys. B (4)

A. Godard, M. Raybaut, M. Lefebvre, A. M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109, 567–571 (2012).
[Crossref]

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B 73, 195–200 (2001).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106, 267–270 (2012).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[Crossref]

IEEE Photon. J. (3)

T. Chen, H. Liu, W. Kong, and R. Shu, “Optimization of the tunable nanosecond cascaded optical parametric oscillators based on monolithic tandem lithium niobate superlattices,” IEEE Photon. J. 8, 1400209 (2016).
[Crossref]

P. Wang, Y. Shang, X. Li, M. Shen, and X. Xu, “Multiwavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation,” IEEE Photon. J. 9, 1500107 (2017).
[Crossref]

K. Wei, X. Zhou, and X. Lai, “3.8-μm mid-infrared laser quasi-synchronously pumped by a MOPA structured picosecond Yb fiber amplifier with multi-pulse operation,” IEEE Photon. J. 8, 1503905 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81  μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25, 2000–2002 (2013).
[Crossref]

J. Mod. Opt. (1)

Z. G. Figen, “Seeded optical parametric generator with efficiency-enhanced mid-wave infrared beam output,” J. Mod. Opt. 61, 1269–1281 (2014).
[Crossref]

Laser Photon. Rev. (1)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev. 7, 188–206 (2013).
[Crossref]

Laser Phys. (1)

T. Chen, H. Liu, Y. Huang, and R. Shu, “High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration,” Laser Phys. 25, 125401 (2015).
[Crossref]

Laser Phys. Lett. (1)

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8, 747–753 (2011).
[Crossref]

Opt. Commun. (1)

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Proc. SPIE (2)

A. Godard, G. Aoust, J. Armougom, E. Cadiou, D. Descloux, G. Walter, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, and M. Lefebvre, “Optical parametric sources for gas sensing applications,” Proc. SPIE 10111, 101112X (2017).
[Crossref]

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989, 598902 (2005).
[Crossref]

Other (1)

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave continuously wavelength tuning of a fiber laser,” in Lasers Congress 2016 (Advanced Solid State Lasers, Applications of Lasers for Sensing and Free Space Communications, Laser Applications Conference), OSA Technical Digest (Optical Society of America, 2016), paper ATh5A.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the AA-DFG system based on a monolithic multichannel tandem LN superlattice.

Fig. 2.
Fig. 2.

Performances of the AA-DFG system pumped by Gaussian- or square-shaped pulses with 20 kW peak power and 50 ns duration. (a), (b) Pump-to-idler conversion efficiencies under different primary signal power and DFG length proportion; the color bars show the pump-to-idler conversion efficiency in percentage. (c), (d) Pulse profiles of the pump, residual pump, idler, primary signal, and secondary signal under the circled optimal working points for both cases. (a), (c) Pumped by Gaussian pulses. (b), (d) Pumped by square pulses.

Fig. 3.
Fig. 3.

Acceptance bandwidths of the pump and primary signal laser with respect to (a) OPA domain periodicity variation, and (b) crystal temperature tuning range. The color bars show the periodicity variation in micrometers and temperature tuning range in degrees Celsius.

Fig. 4.
Fig. 4.

Pump-to-idler conversion efficiency with respect to input beam diameter and DFG length proportion for primary signal power of 0.4 W with different OPA domain periodicity variations. (a) 0, (b) 0.06, (c) 0.12, and (d) 0.24 μm. The color bars show the pump-to-idler conversion efficiency in percentage.

Fig. 5.
Fig. 5.

Pump-to-idler conversion efficiency with respect to input beam diameter and DFG length proportion for primary signal power of 4 W with different OPA domain periodicity variations. (a) 0, (b) 0.06, (c) 0.12, and (d) 0.24 μm. The color bars show the pump-to-idler conversion efficiency in percentage.

Fig. 6.
Fig. 6.

Comparisons between AA-DFG systems with input primary signal powers of 4 W and 0.4 W on the (a) optimal length proportion of DFG section, (b) input beam diameter, and (c) pump-to-idler conversion efficiency with respect to OPA domain periodicity variation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dApdz=αp2Ap12ikp(x2+y2)Ap+κDFG,pAsAieiΔkDFGZ,
dAsdz=αs2As12iks(x2+y2)As+κDFG,sApAi*eiΔkDFGZ,
dAidz=αi2Ai12iki(x2+y2)Ai+κDFG,iApAs*eiΔkDFGZ,
dAsdz=αs2As12iks(x2+y2)As+κOPA,sAs2AieiΔkOPAZ,
dAs2dz=αs22As212iks2(x2+y2)As2+κOPA,s2AsAi*eiΔkOPAZ,
dAidz=αi2Ai12iki(x2+y2)Ai+κOPA,iAsAs2*eiΔkOPAZ,