Abstract

A theoretical design is presented for a 1×M wavelength-selective switch (WSS) that routes any one of N incoming wavelength signals to any one of M output ports. This planar on-chip device comprises of a 1×N demultiplexer, a group of N switching “trees” actuated by electro-optical or thermo-optical means, and an M-fold set of N×1 multiplexers. Trees utilize 1×2 switches. The WSS insertion loss is proportional to [log2(M+N+1)]. Along with cross talk from trees, cross talk is present at each cross-illuminated waveguide intersection within the WSS, and there are at most N1 such crossings per path. These loss and cross talk properties will likely place a practical limit of N=M=16 upon the WSS size. By constraining the 1×2 switching energy to 1  fJ/bit, we find that resonant, narrowband 1×2 switches are required. The 1×2 devices proposed here are nanobeam Mach–Zehnders and asymmetric contra-directional couplers with grating assistance.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Opto-VLSI-based N × M wavelength selective switch

Feng Xiao and Kamal Alameh
Opt. Express 21(15) 18160-18169 (2013)

Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region

Richard Soref, Joshua R. Hendrickson, and Julian Sweet
Opt. Express 24(9) 9369-9382 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Sahara, H. Kawahara, S. Yamamoto, S. Kawai, M. Fukutoku, T. Mizuno, Y. Miyamoto, K. Suzuki, and K. Yamaguchi, “Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions,” Opt. Express 25, 4061–4075 (2017).
    [Crossref]
  2. H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.
  3. H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).
  4. Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.
  5. C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis, “Monolithic flexible-grid 1  ×  2 wavelength-selective switch in silicon photonics,” J. Lightwave Technol. 30, 473–478 (2012).
    [Crossref]
  6. K. Miura, Y. Shoji, and T. Mizumoto, “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630–631.
  7. J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.
  8. R. Soref and J. Hendrickson, “Proposed ultralow-energy dual nanobeam devices for on-chip N  ×  N switching, logic and wavelength multiplexing,” Opt. Express 23, 32582–32596 (2015).
    [Crossref]
  9. H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
    [Crossref]
  10. R. Soref, “Resonant and slow-light 2  ×  2 switches enabled by nanobeam and grating-coupled waveguides,” in Session IP5 at Progress in Electromagnetics Research Symposium (PIERS) (Invited Paper) (2017).
  11. C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popovic, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4210 (2015).
    [Crossref]
  12. L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).
  13. H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.
  14. R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2  ×  2 switches and 1  ×  1 modulators for the 2 to 5  μm infrared region,” Opt. Express 24, 9369–9382 (2016).
    [Crossref]

2017 (2)

2016 (1)

2015 (3)

2012 (1)

Asakura, H.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Buhl, L. L.

Chen, J. G.

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

Chen, L.

Doerr, C. R.

Dupuis, N.

Fang, Q.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Fukutoku, M.

He, Y.

Hendrickson, J.

Hendrickson, J. R.

Ikeda, K.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Ikeda, T.

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

Ikuma, Y.

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

Jia, L.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Jiang, X.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Kawahara, H.

Kawai, S.

Kawashima, H.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Koshino, K.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Li, X.

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

Li, Z.

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

Liow, T.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Liu, B.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Liu, R.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Lo, G.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Lu, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

Luo, X.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Matsumaro, K.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Miura, K.

K. Miura, Y. Shoji, and T. Mizumoto, “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630–631.

Miyamoto, Y.

Mizumoto, T.

K. Miura, Y. Shoji, and T. Mizumoto, “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630–631.

Mizuno, T.

A. Sahara, H. Kawahara, S. Yamamoto, S. Kawai, M. Fukutoku, T. Mizuno, Y. Miyamoto, K. Suzuki, and K. Yamaguchi, “Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions,” Opt. Express 25, 4061–4075 (2017).
[Crossref]

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

Namiki, S.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Ohtsuka, M.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Peng, J.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Popovic, M. A.

Poulton, C. V.

Qiu, C.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Sahara, A.

Seki, M.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Shoji, Y.

K. Miura, Y. Shoji, and T. Mizumoto, “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630–631.

Song, J.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Soref, R.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2  ×  2 switches and 1  ×  1 modulators for the 2 to 5  μm infrared region,” Opt. Express 24, 9369–9382 (2016).
[Crossref]

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual nanobeam devices for on-chip N  ×  N switching, logic and wavelength multiplexing,” Opt. Express 23, 32582–32596 (2015).
[Crossref]

R. Soref, “Resonant and slow-light 2  ×  2 switches enabled by nanobeam and grating-coupled waveguides,” in Session IP5 at Progress in Electromagnetics Research Symposium (PIERS) (Invited Paper) (2017).

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Su, Y.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Sugiyama, K.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.

Suzuki, K.

A. Sahara, H. Kawahara, S. Yamamoto, S. Kawai, M. Fukutoku, T. Mizuno, Y. Miyamoto, K. Suzuki, and K. Yamaguchi, “Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions,” Opt. Express 25, 4061–4075 (2017).
[Crossref]

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Sweet, J.

Takahashi, H.

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

Tanizawa, K.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Toyama, M.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Tsuda, H.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

Tu, X.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Wade, M. T.

Wu, J.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Xu, Z.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Yamaguchi, K.

Yamamoto, S.

Yokoyama, N.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Yoshida, T.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Yu, M.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

Zeng, X.

Zhang, Y.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Zhou, H.

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5, 108–112 (2017).
[Crossref]

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Zhou, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

Zhu, Q.

IEEE Photon. J. (1)

L. Lu, L. Zhou, Z. Li, X. Li, and J. G. Chen, “Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Photon. Res. (1)

Other (7)

R. Soref, “Resonant and slow-light 2  ×  2 switches enabled by nanobeam and grating-coupled waveguides,” in Session IP5 at Progress in Electromagnetics Research Symposium (PIERS) (Invited Paper) (2017).

K. Miura, Y. Shoji, and T. Mizumoto, “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630–631.

J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, and G. Lo, “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, OSA Technical Digest (2012), paper OM2J.2.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.

H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, and H. Kawashima, “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, and R. Soref, “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016), paper JTh2A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of proposed WSS employing an N-fold set of wavelength-dedicated 1×M equi-path switching trees.

Fig. 2.
Fig. 2.

Implementation of Fig. 1 utilizing inplane 1×3 and 3×1 arrayed-waveguide grating devices for the demux and mux sections.

Fig. 3.
Fig. 3.

Waveguide diagram of 1×4 tree utilizing dual-nanobeam MZIs as the 1×2 constituent switches.

Fig. 4.
Fig. 4.

Waveguide diagram of 1×4 tree utilizing MZI constituent 1×2 switches composed of a pair of three-waveguide couplers, each containing a central nanobeam.

Fig. 5.
Fig. 5.

Waveguide diagram of 1×4 tree using asymmetric contra-couplers as 1×2 elemental switches, each switch containing an offset dual-grating coupling region.

Fig. 6.
Fig. 6.

Overall spectral response of the switches in Figs. 3, 4, and 5 in the zero bias state (unshifted spectrum) and in the full-bias state (shifted spectrum).

Fig. 7.
Fig. 7.

Passive demultiplexing of a multiwavelength input stream using a sequence of dedicated-resonance 2×2 devices (the example of the Fig. 3 structure).

Fig. 8.
Fig. 8.

Proposed design of three-wavelength, four-output WSS utilizing Fig. 3 devices.

Metrics