Abstract

A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon (Si) photonic stripe waveguide, a section of hyperbolic metamaterials (HMM) consisting of 20-pair alternating vanadium dioxide (VO2)/Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400  nm×220  nm×200  nm (width×height×length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth (MD) of 5.6 dB and insertion loss (IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD>5  dB and IL<1.25  dB. Furthermore, we discuss that the tungsten-doped VO2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Silicon waveguide optical switch with embedded phase change material

Kevin J. Miller, Kent A. Hallman, Richard F. Haglund, and Sharon M. Weiss
Opt. Express 25(22) 26527-26536 (2017)

Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(11) 11192-11201 (2010)

Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors

Arash Joushaghani, Junho Jeong, Suzanne Paradis, David Alain, J. Stewart Aitchison, and Joyce K. S. Poon
Opt. Express 23(3) 3657-3668 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Wan, T. K. Gaylord, and M. S. Bakir, “Grating design for interlayer optical interconnection of in-plane waveguides,” Appl. Opt. 55, 2601–2610 (2016).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  3. J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
    [Crossref]
  4. K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Guo, “Design of an optical power and wavelength splitter based on subwavelength waveguides,” J. Lightwave Technol. 32, 3020–3026 (2014).
    [Crossref]
  5. P. Dastmalchi and G. Veronis, “Plasmonic switches based on subwavelength cavity resonators,” J. Opt. Soc. Am. B 33, 2486–2492 (2016).
    [Crossref]
  6. J. Kim, S. Y. Lee, H. Park, K. Lee, and B. Lee, “Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity,” Opt. Express 23, 9004–9013 (2015).
    [Crossref]
  7. Y. Li and W. P. Huang, “Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide,” Opt. Express 23, 24843–24849 (2015).
    [Crossref]
  8. A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
    [Crossref]
  9. P. P. Sahu, “Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler,” J. Lightwave Technol. 34, 1300–1305 (2016).
    [Crossref]
  10. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  11. J. Li, J. Tao, Z. H. Chen, and X. G. Huang, “All-optical controlling based on nonlinear graphene plasmonic waveguides,” Opt. Express 24, 22169–22176 (2016).
    [Crossref]
  12. G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
    [Crossref]
  13. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  14. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Express 1, 1090–1099 (2011).
    [Crossref]
  15. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
    [Crossref]
  16. V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
    [Crossref]
  17. C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
    [Crossref]
  18. R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41, 4099–4102 (2016).
    [Crossref]
  19. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
    [Crossref]
  20. J. H. Choe and J. T. Kim, “Design of vanadium oxide-based plasmonic modulator for both TE and TM modes,” IEEE Photon. Technol. Lett. 27, 514–517 (2015).
    [Crossref]
  21. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
    [Crossref]
  22. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  23. D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
    [Crossref]
  24. L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical investigations of a near-infrared plasmonic refractive index sensor with extremely high figure of merit and low loss based on the hybrid plasmonic waveguide-nanocavity system,” Opt. Express 24, 23260–23270 (2016).
    [Crossref]
  25. M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33, 980–988 (2016).
    [Crossref]
  26. T. Li and J. B. Khurgin, “Hyperbolic metamaterials: beyond the effective medium theory,” Optica 3, 1388–1396 (2016).
    [Crossref]
  27. V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23, 9681 (2015).
    [Crossref]
  28. G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
    [Crossref]
  29. T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
    [Crossref]
  30. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
    [Crossref]

2016 (12)

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

P. P. Sahu, “Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler,” J. Lightwave Technol. 34, 1300–1305 (2016).
[Crossref]

C. Wan, T. K. Gaylord, and M. S. Bakir, “Grating design for interlayer optical interconnection of in-plane waveguides,” Appl. Opt. 55, 2601–2610 (2016).
[Crossref]

M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33, 980–988 (2016).
[Crossref]

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41, 4099–4102 (2016).
[Crossref]

J. Li, J. Tao, Z. H. Chen, and X. G. Huang, “All-optical controlling based on nonlinear graphene plasmonic waveguides,” Opt. Express 24, 22169–22176 (2016).
[Crossref]

L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical investigations of a near-infrared plasmonic refractive index sensor with extremely high figure of merit and low loss based on the hybrid plasmonic waveguide-nanocavity system,” Opt. Express 24, 23260–23270 (2016).
[Crossref]

P. Dastmalchi and G. Veronis, “Plasmonic switches based on subwavelength cavity resonators,” J. Opt. Soc. Am. B 33, 2486–2492 (2016).
[Crossref]

T. Li and J. B. Khurgin, “Hyperbolic metamaterials: beyond the effective medium theory,” Optica 3, 1388–1396 (2016).
[Crossref]

2015 (7)

J. Kim, S. Y. Lee, H. Park, K. Lee, and B. Lee, “Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity,” Opt. Express 23, 9004–9013 (2015).
[Crossref]

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23, 9681 (2015).
[Crossref]

Y. Li and W. P. Huang, “Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide,” Opt. Express 23, 24843–24849 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

J. H. Choe and J. T. Kim, “Design of vanadium oxide-based plasmonic modulator for both TE and TM modes,” IEEE Photon. Technol. Lett. 27, 514–517 (2015).
[Crossref]

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

2014 (3)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
[Crossref]

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Guo, “Design of an optical power and wavelength splitter based on subwavelength waveguides,” J. Lightwave Technol. 32, 3020–3026 (2014).
[Crossref]

2013 (3)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

2012 (1)

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

2011 (2)

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Express 1, 1090–1099 (2011).
[Crossref]

2010 (2)

Ahn, K. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Ahn, Y. H.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Alaee, R.

Albooyeh, M.

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
[Crossref]

Atwater, H. A.

Babicheva, V. E.

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23, 9681 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
[Crossref]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

Bakir, M. S.

Basov, D. N.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Bebek, G. K.

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Bernussi, A. A.

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

Boltasseva, A.

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23, 9681 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Express 1, 1090–1099 (2011).
[Crossref]

Briggs, R. M.

Chen, L.

Chen, Z.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Chen, Z. H.

Cheng, Z.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Choe, J. H.

J. H. Choe and J. T. Kim, “Design of vanadium oxide-based plasmonic modulator for both TE and TM modes,” IEEE Photon. Technol. Lett. 27, 514–517 (2015).
[Crossref]

Choi, S. B.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Dastmalchi, P.

Dong, X.

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

Eleftheriades, G. V.

Emboras, A.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Fainman, Y.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Fan, Z.

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

Fedoryshyn, Y.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Fei, Z.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Ferrara, D. W.

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Fogler, M. M.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gaylord, T. K.

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Goldflam, M. D.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Guo, Z.

Haffner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Hafner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Heni, W.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hoessbacher, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Holtz, M.

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

Hone, J.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Hoqie, M. N. F.

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

Hu, R. L.

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

Hu, Y.

Huang, W. P.

Huang, X. G.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Ishii, S.

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
[Crossref]

Jeong, J.

Jiang, Y. D.

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

Jr, R. F. H.

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Kaye, A. B.

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Keilmann, F.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Khurgin, J. B.

Kildishev, A. V.

Kim, B. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Kim, D. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Kim, H. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Kim, H. T.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Kim, J.

J. Kim, S. Y. Lee, H. Park, K. Lee, and B. Lee, “Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity,” Opt. Express 23, 9004–9013 (2015).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Express 1, 1090–1099 (2011).
[Crossref]

Kim, J. T.

J. H. Choe and J. T. Kim, “Design of vanadium oxide-based plasmonic modulator for both TE and TM modes,” IEEE Photon. Technol. Lett. 27, 514–517 (2015).
[Crossref]

Kim, M.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Koch, U.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Kyoung, J. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

Lavrinenko, A. V.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
[Crossref]

Lee, B.

Lee, K.

Lee, S. Y.

Lei, L.

Leuthold, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Li, J.

Li, T.

Li, Y.

Liu, M. K.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Liu, Y.

Liu, Z.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Ma, P.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Ma, R.

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

MacQuarrie, E. R.

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

McLeod, A. S.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Nag, V. D. B. J.

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Express 1, 1090–1099 (2011).
[Crossref]

Neto, A. H. C.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Ni, G. X.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Niegemann, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Özyilmaz, B.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Park, H.

Park, H. R.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Poon, J. K. S.

Post, K. W.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Pryce, I. M.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Riley, C. T.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Rockstuhl, C.

Rotermund, F.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Sahu, P. P.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Shalaginov, M. Y.

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
[Crossref]

Shu, C.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Sirbuly, D. J.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Smalley, J. S. T.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Tao, J.

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tretyakov, S.

Tsang, H. K.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Veronis, G.

Wagner, M.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Wan, C.

Wan, X.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Wang, D.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Wang, J.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Wang, L.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Wang, T.

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

Wen, K.

Wu, D.

Xu, J.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Ye, H.

Yu, H.

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

Yu, Z.

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhang, Y.

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhou, J.

Zhu, B.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

D. W. Ferrara, E. R. MacQuarrie, V. D. B. J. Nag, A. B. Kaye, and R. F. H. Jr, “Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation,” Appl. Phys. A 108, 255–261 (2012).
[Crossref]

Appl. Phys. Lett. (2)

G. K. Bebek, M. N. F. Hoqie, M. Holtz, Z. Fan, and A. A. Bernussi, “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett. 105, 201902 (2014).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011).
[Crossref]

Chin. Phys. B (1)

T. Wang, H. Yu, X. Dong, Y. D. Jiang, and R. L. Hu, “Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process,” Chin. Phys. B 24, 038102 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. H. Choe and J. T. Kim, “Design of vanadium oxide-based plasmonic modulator for both TE and TM modes,” IEEE Photon. Technol. Lett. 27, 514–517 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nano Convergence (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 14 (2014).
[Crossref]

Nanophotonics (1)

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4, 165–185 (2015).
[Crossref]

Nanoscale (1)

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8, 13206–13211 (2016).
[Crossref]

Nat. Photonics (3)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Optica (1)

Sci. Rep. (1)

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6, 38647 (2016).
[Crossref]

Small (1)

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials,” Small 12, 892–901 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) 3D and (b) lateral view of the proposed optical switch inserted with an HMM structure consisting of 20-pair alternating VO2/Si layers on a glass substrate.

Fig. 2.
Fig. 2.

(a) Transmittance diagram of TON based on dielectric VO2 layers with varying k of n˜exp(D). (b) Using the same dielectric VO2 layers with constant n˜exp(D)=3.1309+0.3612i, relationship curve of MD-dm is calculated based on metallic VO2 layers for different k of n˜exp(M).

Fig. 3.
Fig. 3.

Electric field distribution of TE mode propagation for (a) “ON” and (b) “OFF” state with zoom-in views of the HMM structure.

Fig. 4.
Fig. 4.

Power flux density Poavx distribution of TE mode propagation for (a) “ON” and (b) “OFF” state with zoom-in views of the HMM structure.

Fig. 5.
Fig. 5.

Transmission diagram of (a) TON (D) and (b) TOFF (M) for an optical switch with dm varying from 5 to 55 nm.

Fig. 6.
Fig. 6.

Electric field intensity distribution in an optical switch in“OFF” state with different HMM length of (a) LHMM=200  nm (dm=dd=5 nm) and (b) LHMM=600  nm (dm=dd=15 nm).

Fig. 7.
Fig. 7.

Calculated (a) MD and (b) IL as a function of wavelength with dm (LHMM) varying from 5 nm (200 nm) to 55 nm (2200 nm).

Fig. 8.
Fig. 8.

Based on an optical switch using W-doped VO2 layers (dm=5  nm), MD varies as a function of both n and k of n˜exp(M).

Metrics