Abstract

We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift (EPS) of quarter-wave integrated with a distributed Bragg reflector (DBR) at λ5.03  μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers

Ying-hui Liu, Jin-chuan Zhang, Fang-liang Yan, Zhi-wei Jia, Feng-qi Liu, Ping Liang, Ning Zhuo, Shen-qiang Zhai, Li-jun Wang, Jun-qi Liu, Shu-man Liu, and Zhan-guo Wang
Opt. Express 24(17) 19545-19551 (2016)

Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector

Peter Fuchs, Jochen Friedl, Sven Höfling, Johannes Koeth, Alfred Forchel, Lukas Worschech, and Martin Kamp
Opt. Express 20(4) 3890-3897 (2012)

Surface-grating distributed Bragg reflector quantum-well lasers fabricated in AlGaAs–GaAs asymmetric epitaxial waveguides

Hoshin H. Yee, Steven Ayling, and Richard M. De La Rue
Appl. Opt. 38(30) 6325-6332 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  2. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [Crossref]
  3. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [Crossref]
  4. S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
    [Crossref]
  5. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
    [Crossref]
  6. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, 1946).
  7. T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
    [Crossref]
  8. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [Crossref]
  9. R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
    [Crossref]
  10. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
    [Crossref]
  11. I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
    [Crossref]
  12. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [Crossref]
  13. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
    [Crossref]

2011 (1)

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

2009 (1)

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

2005 (2)

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

2002 (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

1998 (1)

1997 (2)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1991 (1)

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

1964 (1)

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
[Crossref]

Audet, R. M.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

Belkin, M. A.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Blanchard, R.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Blaser, S.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Bonetti, Y.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Brillouin, L.

L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, 1946).

Cai, S.

Capasso, F.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Caroubalos, C.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

Cho, A. Y.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Darvish, S. R.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Diehl, L.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Dupuis, R. D.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Evans, A.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Faist, J.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Giovannini, M.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Gmachl, C.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

Gokden, B.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Hvozdara, L.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Hyang, Y.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

Lee, B. G.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Menzel, S.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Muller, A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Namjou, K.

Negro, L. D.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Oliner, A. A.

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
[Crossref]

Orfanos, I.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

Pflügl, C.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Razeghi, M.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Ryou, J.-H.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Sirtori, C.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Slivken, S.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Sphicopoulos, T.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

Tamir, T.

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
[Crossref]

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

Tsigopoulos, A.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

Wang, C.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Wang, H. C.

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
[Crossref]

Whittaker, E. A.

Yarekha, D. A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Yu, J. S.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

Zhang, H. A.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Appl. Phys. Lett. (3)

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≃ 5.4  μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8  μm,” Appl. Phys. Lett. 87, 041104 (2005).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

IEEE J. Quantum Electron. (3)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron. 27, 946–956 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. 12, 323–335 (1964).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

New J. Phys. (1)

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Hyang, J.-H. Ryou, R. D. Dupuis, L. D. Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Opt. Lett. (1)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Other (1)

L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, 1946).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Device structure of the DFB QCL integrated with a DBR.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the uniform grating. The inset shows the detail near the Bragg wavelength. (b) The transmission spectrum of the uniform sampled grating. (c) The transmission spectrum of the uniform sampled grating with the EPS of the λ/4. The inset displays the detail of the positive first-order mode. (d) The blue line is the transmission spectrum of the uniform sampled grating with the EPS of the λ/4, and the red line is the reflection spectrum of the DBR section of the DFB QCL integrated with a DBR.

Fig. 3.
Fig. 3.

(a) Emission spectra of the laser without DBR section at 20°C for different currents of 500–580 mA in a step of 40 mA. (b) The emission spectra of the laser with the DBR section at 1.1Ith and 1.25Ith current. (c) The emission spectra of the laser with the DBR section at 20°C for different currents of 500–700 mA in a step of 40 mA. (d) The emission spectra of the laser with the DBR section at 1.1Ith for different heat-sink temperatures of 10–40°C in a step of 10°C. The inset shows the linear tuning characteristics of the wavelength with temperature.

Fig. 4.
Fig. 4.

P-I characteristics of the lasers as a function of the injection current at pulsed operation at 20°C. The red line shows the PI characteristic of the laser without DBR section. The black line displays the PI characteristic of the laser with DBR section.