Abstract

The effects of gain compression on the modulation dynamics of an optically injected gain lever semiconductor laser are studied. Calculations reveal that the gain compression is not necessarily a drawback affecting the laser dynamics. With a practical injection strength, a high gain lever effect and a moderate compression value allow us to theoretically predict a modulation bandwidth four times higher than the free-running one without a gain lever, which is of paramount importance for the development of directly modulated broadband optical sources compatible with short-reach communication links.

© 2017 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper.
  2. T. Yamamoto, “High-speed directly modulated lasers,” in Optical Fiber Communication Conference (OFC) (2012), paper OTh3F.5.
  3. W. A. Ling, Y. Matsui, H. M. Daghighian, and I. Lyubomirsky, “112  Gb/s transmission with a directly-modulated laser using FFT-based synthesis of orthogonal PAM and DMT signals,” Opt. Express 23, 19202–19212 (2015).
    [Crossref]
  4. 100  G Coherent solutions—features and applications.
  5. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
    [Crossref]
  6. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43  Gb/s 1.3  μm DFB laser for 40  km transmission,” J. Lightwave Technol. 30, 2520–2524 (2012).
    [Crossref]
  7. T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
    [Crossref]
  8. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
    [Crossref]
  9. S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
    [Crossref]
  10. K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
    [Crossref]
  11. J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
    [Crossref]
  12. M. Pochet, N. G. Usechak, J. Schmidt, and L. F. Lester, “Modulation response of a long-cavity, gain-levered quantum-dot semiconductor laser,” Opt. Express 22, 1726–1734 (2014).
    [Crossref]
  13. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).
  14. Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
    [Crossref]
  15. E. Kapon, Semiconductor Lasers I: Fundamentals, Optics and Photonics, (Academic, 1993).
  16. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
    [Crossref]

2015 (3)

W. A. Ling, Y. Matsui, H. M. Daghighian, and I. Lyubomirsky, “112  Gb/s transmission with a directly-modulated laser using FFT-based synthesis of orthogonal PAM and DMT signals,” Opt. Express 23, 19202–19212 (2015).
[Crossref]

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

2014 (1)

2012 (2)

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43  Gb/s 1.3  μm DFB laser for 40  km transmission,” J. Lightwave Technol. 30, 2520–2524 (2012).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

2010 (1)

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

2006 (1)

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[Crossref]

1995 (1)

T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

1989 (1)

K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
[Crossref]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[Crossref]

Bryce, A.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Chang-Hasnain, C. J.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

Chen, T.

K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
[Crossref]

Chow, W. W.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

Chrostowski, L.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

Coldren, L.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

Corzine, S.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

Crowley, M. T.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Daghighian, H. M.

Fujisawa, T.

Fukamachi, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Gavrielides, A.

T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Grillot, F.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Kano, F.

Kapon, E.

E. Kapon, Semiconductor Lasers I: Fundamentals, Optics and Photonics, (Academic, 1993).

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[Crossref]

Kitatani, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Kobayashi, W.

Kovanis, V.

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

LaRochelle, S.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

Lester, L.

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

Lester, L. F.

M. Pochet, N. G. Usechak, J. Schmidt, and L. F. Lester, “Modulation response of a long-cavity, gain-levered quantum-dot semiconductor laser,” Opt. Express 22, 1726–1734 (2014).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Li, Y.

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

Ling, W. A.

Liu, J.

T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Lyubomirsky, I.

Matsui, Y.

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[Crossref]

Naderi, N.

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

Naderi, N. A.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Nakahara, K.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Newkirk, M. A.

K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
[Crossref]

Pochet, M.

Sakuma, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Sarraute, J.-M.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

Schires, K.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

Schmidt, J.

Simpson, T. B.

T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Su, H.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Tadokoro, T.

Tanaka, S.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Taniguchi, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Usechak, N. G.

Vahala, K.

K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
[Crossref]

Wakayama, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Wieczorek, S.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

Yamamoto, T.

T. Yamamoto, “High-speed directly modulated lasers,” in Optical Fiber Communication Conference (OFC) (2012), paper OTh3F.5.

Yamanaka, T.

Appl. Phys. Lett. (1)

K. Vahala, M. A. Newkirk, and T. Chen, “The optical gain lever: a novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54, 2506–2508 (1989).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[Crossref]

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Quantum Electron. 42, 552–562 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
[Crossref]

IEEE Photon. J. (1)

Y. Li, N. Naderi, V. Kovanis, and L. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2, 321–329 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

T. B. Simpson, J. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Semicond. Semimet. (1)

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, and A. Bryce, “GaAs-based quantum dot lasers,” Semicond. Semimet. 86, 371–417 (2012).
[Crossref]

Other (5)

E. Kapon, Semiconductor Lasers I: Fundamentals, Optics and Photonics, (Academic, 1993).

Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper.

T. Yamamoto, “High-speed directly modulated lasers,” in Optical Fiber Communication Conference (OFC) (2012), paper OTh3F.5.

100  G Coherent solutions—features and applications.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the two-section GL laser (framed by black dotted square). Evolution of the material gain with the carrier density in both sections (left). Ga,b are the differential gains in each section. (b) Schematic of the OIL configuration.

Fig. 2.
Fig. 2.

MTF of the free-running laser without GL calculated from 5 for ϵ=0,5×1017,1016,and  5×1016cm3.

Fig. 3.
Fig. 3.

MTF of the OIGL laser calculated from 3 for different values of gain compression ϵ=0,1017,5×1017,and  1016cm3 and with a GL of g=10. The injected power and frequency detuning are (a) K=3.5,Δf/fR=0.97 and (b) K=8,Δf/fR=3.3. Red dotted curves represent the MTF for the free-running case assuming no compression and without GL.

Fig. 4.
Fig. 4.

3 dB bandwidth in the stable-locking region of the OIGL laser with g=10 and ϵ=1016  cm3.

Fig. 5.
Fig. 5.

Evolution of the 3 dB bandwidth with respect to GL strength and gain compression factor for (a) K=0 and (b) K=8.

Tables (1)

Tables Icon

Table 1. Material and Laser Parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Gk(Nk,S,ϵ)=Gk,01+ϵSln(Nk+NsNtr+Ns),
dNkdt=JkeVNkτc,kGkS,k[a,b],kZ,
dSdt=GS+2kcSinjScos(ϕ)+Rsp,
dϕdt=GαH2ΔωinjkcSinjSsin(ϕ),
dX=X1eıωt,
dGk=Gk,01+ϵS0dNkϵGk1+ϵS0dS,
iω[Na,1Nb,1S1ϕ1]=M[Na,1Nb,1S1ϕ1]+[Ja,1/(eV)Jb,1/(eV)00],
|R(f)|2=B02[(ηA2f2)2+(A1f)2][B1fB3f3]2+[ηB0B2f2+f4]2,
χ=ϵS01+ϵS0[1τp2ηcos(ϕ0)]·A0ϵ=χ16π6(γb)2gZϕ,αH,A1ϵ=χ8π3[γb(g+1)ηZϕ,αH+(γb)2g]A2ϵ=χ4π2[ηZϕ,αH+γb(g+1)],A3ϵ=χ2π
A0=η(γb)2g16π4+γbgZϕ,αHσ16π4,A1=2πZϕ,αH+2πηγb,A1=[γb(g+1)η2+2ηcos(ϕ0)(γb)2g+σ(γbg+ηZϕ,αH)]18π3,A2=[η2+2ηcos(ϕ0)γb(g+1)+(γb)2g+σ]14π2,A3=[2ηcos(ϕ0)+γb(g+1)]12π,A2=4π2γbZϕ,αH,Zϕ,αH=cos(ϕ0)αHsin(ϕ0),η=kcK,γk=11+ϵS0(1τc,k+Gk,0S0)+ϵS0τc,k(1+ϵS0),K=SinjS0σ=11+ϵS0(1τp2ηcos(ϕ0))(γb1τc,b),g=γaγb.

Metrics