Abstract

Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.

© 2017 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
    [Crossref]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  4. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17, 5118–5124 (2009).
    [Crossref]
  5. C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
    [Crossref]
  6. J. Guo, S. Tantawi, and M. Park, “Active RF pulse compression using electrically controlled semiconductor switches,” in 12th Workshop Advanced Accelerator Concepts (American Institute of Physics, 2006).
  7. I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
    [Crossref]
  8. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
    [Crossref]
  9. A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
    [Crossref]
  10. A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref]
  11. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19, 8102–8107 (2011).
    [Crossref]
  12. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
    [Crossref]
  13. W. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
    [Crossref]
  14. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
    [Crossref]
  15. J.-S. Li, “Novel optical modulator using silicon photonic crystals,” Opt. Laser Technol. 40, 790–794 (2008).
    [Crossref]
  16. B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
    [Crossref]
  17. Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
    [Crossref]
  18. X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
    [Crossref]
  19. M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–739 (2005).
    [Crossref]
  20. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref]
  21. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide,” Opt. Lett. 38, 2680–2682 (2013).
    [Crossref]
  22. A. Irace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2013).
    [Crossref]
  23. M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
    [Crossref]
  24. R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
    [Crossref]
  25. L. Vina and M. Cardona, “Effect of heavy doping on the optical properties and the band structure of silicon,” Phys. Rev. B 29, 6739–6751 (1984).
    [Crossref]
  26. D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
    [Crossref]
  27. T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
    [Crossref]
  28. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, and F. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator,” J. Lightwave Technol. 31, 4119–4125 (2013).
    [Crossref]
  29. J. Wang, L. Zhou, H. Zhu, R. Yang, Y. Zhou, L. Liu, T. Wang, and J. Chen, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res. 3, 58–62 (2015).
    [Crossref]
  30. H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
    [Crossref]
  31. K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).
  32. A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20, 12318–12325 (2012).
    [Crossref]
  33. R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
    [Crossref]
  34. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
    [Crossref]
  35. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Wiley, 1973), pp. 48–94.
  36. L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).
  37. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  38. C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
    [Crossref]
  39. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
    [Crossref]
  40. Lumerical Mode Solutions [online]. Available: https://www.lumerical.com/ .
  41. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
    [Crossref]
  42. S. Sze and K. Ng, Physics of Semiconductor Devices (Wiley, 1981).
  43. D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
    [Crossref]
  44. C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
    [Crossref]

2016 (2)

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

2015 (4)

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

J. Wang, L. Zhou, H. Zhu, R. Yang, Y. Zhou, L. Liu, T. Wang, and J. Chen, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res. 3, 58–62 (2015).
[Crossref]

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

2014 (1)

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

2013 (3)

2012 (4)

A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20, 12318–12325 (2012).
[Crossref]

T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
[Crossref]

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

2011 (3)

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19, 8102–8107 (2011).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

2009 (2)

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17, 5118–5124 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

2008 (4)

J.-S. Li, “Novel optical modulator using silicon photonic crystals,” Opt. Laser Technol. 40, 790–794 (2008).
[Crossref]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

2007 (1)

2006 (5)

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

2005 (3)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]

M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–739 (2005).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

2004 (1)

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

2002 (1)

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1984 (1)

L. Vina and M. Cardona, “Effect of heavy doping on the optical properties and the band structure of silicon,” Phys. Rev. B 29, 6739–6751 (1984).
[Crossref]

1981 (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

1977 (1)

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

Abdullah, H.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

Alipuor-Banaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Andalib, A.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Andreani, L. C.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Ang, T. Y. L.

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

Asaduzzaman, M.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

Asghari, M.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

Baba, T.

Bakaul, M.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

Beausoleil, R. G.

Ben Bakir, B.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bernabe, S.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Bertness, K. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

Bin, Y. M.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Breglio, G.

A. Irace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2013).
[Crossref]

Brown, T. G.

Burrell, G. J.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Wiley, 1973), pp. 48–94.

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Cardona, M.

L. Vina and M. Cardona, “Effect of heavy doping on the optical properties and the band structure of silicon,” Phys. Rev. B 29, 6739–6751 (1984).
[Crossref]

Cassan, E.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

Cercus, J.-L.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Chen, J.

Chen, R. T.

Chen, X.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Cole, J. B.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Cordat, A.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Cutolo, A.

A. Irace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2013).
[Crossref]

Danner, A. J.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Das, R.

T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
[Crossref]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[Crossref]

Dong, J.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

Ebrahimy, M. N.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Elliman, R. G.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Ellis, B.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Wiley, 1973), pp. 48–94.

Fainman, Y.

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

Fathpour, S.

Fedeli, J.-M.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Fédéli, J. M.

Franck, T.

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Gan, F.

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Gondarenko, A.

Green, W.

Guo, J.

J. Guo, S. Tantawi, and M. Park, “Active RF pulse compression using electrically controlled semiconductor switches,” in 12th Workshop Advanced Accelerator Concepts (American Institute of Physics, 2006).

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Hanim, A. R.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Hayakawa, R.

Hazura, H.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Henry, C. H.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

Hodge, D.

Hosseini, A.

Hu, T.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Huang, X.-L.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Irace, A.

A. Irace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2013).
[Crossref]

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Ishikura, N.

Jalali, B.

Jha, R.

T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
[Crossref]

Jiang, X.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Katayama, Y.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Keil, U. D.

Keyvaninia, S.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Khandokar, R. H.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

Kopp, C.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Kruzhaev, V. V.

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

Kwong, D.-L.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Le Roux, X.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Le Thanh, V.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Li, C.-T.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Li, E. P.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Li, H.

Li, J.-S.

J.-S. Li, “Novel optical modulator using silicon photonic crystals,” Opt. Laser Technol. 40, 790–794 (2008).
[Crossref]

Li, L.

Liao, L.

Lim, S. T.

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Lin, C.-Y.

Lin, H.-H.

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

Ling, W.

Lipson, M.

Liscidini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Liu, A.

Liu, L.

Lo Savio, R.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Logan, R. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Luterov, K.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Manipatruni, S.

Manolatou, C.

Mardiana, B.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Marris, D.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Marris-Morini, D.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

Mashanovich, G. Z.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Mates, T.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Menon, P. S.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Minkov, G. M.

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Mizuta, H.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Morse, M.

Moss, T. S.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Wiley, 1973), pp. 48–94.

Nedeljkovic, M.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Negashev, S. A.

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

Ng, K.

S. Sze and K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Nguyen, H. C.

Nirmalathas, T.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Oda, S.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Ogawa, K.

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Orafaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Orobtchouk, R.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Ostatnick, T.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Pang, A.

Park, G. H.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Park, M.

J. Guo, S. Tantawi, and M. Park, “Active RF pulse compression using electrically controlled semiconductor switches,” in 12th Workshop Advanced Accelerator Concepts (American Institute of Physics, 2006).

Pascal, D.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Pelant, I.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Png, C. E.

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Poitras, C. B.

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Porte, H.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Preston, K.

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

Puckett, M. W.

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

Qiu, C.

Rahimi, S.

Rasigade, G.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Reed, G. T.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Rooks, M. J.

Rubin, D.

Samara-Rubio, D.

Schmid, J. H.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Schmidt, B. S.

Schrank, F.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Sekaric, L.

Selvaraja, S. K.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Shaari, S.

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Shao, H.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Sharma, R.

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

Sheng, Z.

Skafidas, S.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

Skopalov, E.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Smith, B. T.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Srivastava, T.

T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
[Crossref]

Subbaraman, H.

Sun, C.-L.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Sun, M. J.

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

Sze, S.

S. Sze and K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Tan, Y. T.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

Tantawi, S.

J. Guo, S. Tantawi, and M. Park, “Active RF pulse compression using electrically controlled semiconductor switches,” in 12th Workshop Advanced Accelerator Concepts (American Institute of Physics, 2006).

The Doan, M.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Thomson, D. J.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Thourhout, D. V.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Tomiyama, K.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Tsong Tan, Y.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Turner, A. C.

Valenta, J.

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

Vallini, F.

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

Vina, L.

L. Vina and M. Cardona, “Effect of heavy doping on the optical properties and the band structure of silicon,” Phys. Rev. B 29, 6739–6751 (1984).
[Crossref]

Vivien, L.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

Vlasov, Y. A.

W. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Wang, J.

Wang, M.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Wang, T.

Wang, X.

Wang, Y.-D.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Willner, A. E.

Wu, A.

Xu, D.

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Xu, X.

Yamada, S.

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

Yang, J.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Yang, R.

Yu, P.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Yue, Y.

Zhang, D.-M.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Zhang, L.

Zhao, Y.

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Zheng, C.-T.

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Zheng, D. W.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

Zhou, L.

Zhou, Y.

Zhu, H.

Zhu, Z.

Zimmermann, L.

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Zou, S.

Zverev, L. P.

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

AIP Conf. Proc. (1)

H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, and P. S. Menon, “Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator,” AIP Conf. Proc. 1341, 241–244 (2011).
[Crossref]

Am. J. Appl. Sci. (1)

B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, and H. Abdullah, “Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection,” Am. J. Appl. Sci. 9, 1527–1533 (2012).
[Crossref]

Appl. Phys. B (2)

I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, and R. G. Elliman, “Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics,” Appl. Phys. B 83, 87–91 (2006).
[Crossref]

T. Srivastava, R. Das, and R. Jha, “On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals,” Appl. Phys. B 108, 629–634 (2012).
[Crossref]

Appl. Phys. Lett. (4)

R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, and Y. Fainman, “Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides,” Appl. Phys. Lett. 106, 241104 (2015).
[Crossref]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[Crossref]

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, and S. Laval, “Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures,” Appl. Phys. Lett. 85, 887–889 (2004).
[Crossref]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, and K. Ogawa, “Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters,” IEEE J. Sel. Top. Quantum Electron. 22, 99–106 (2016).
[Crossref]

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum Electron. 22, 73–80 (2016).
[Crossref]

C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, and L. Zimmermann, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. Appl. Phys. (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, and X. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54, 635–638 (2012).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Opt. Commun. (1)

A. Irace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2013).
[Crossref]

Opt. Express (8)

A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20, 12318–12325 (2012).
[Crossref]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17, 5118–5124 (2009).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19, 8102–8107 (2011).
[Crossref]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]

W. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
[Crossref]

Opt. Laser Technol. (1)

J.-S. Li, “Novel optical modulator using silicon photonic crystals,” Opt. Laser Technol. 40, 790–794 (2008).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–739 (2005).
[Crossref]

Opt. Quantum Electron. (1)

X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, and D.-M. Zhang, “Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide,” Opt. Quantum Electron. 47, 3783–3803 (2015).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

L. Vina and M. Cardona, “Effect of heavy doping on the optical properties and the band structure of silicon,” Phys. Rev. B 29, 6739–6751 (1984).
[Crossref]

Physica E (1)

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23, 064006 (2008).
[Crossref]

Sov. Phys. (1)

L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, and G. M. Minkov, “Mechanism of band gap variation in heavily doped gallium arsenide,” Sov. Phys. 11, 603–605 (1977).

Other (5)

S. Sze and K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Lumerical Mode Solutions [online]. Available: https://www.lumerical.com/ .

K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, and S. Oda, “Broadband variable chromatic dispersion in photonic-band electro-optic waveguide,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2006).

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Wiley, 1973), pp. 48–94.

J. Guo, S. Tantawi, and M. Park, “Active RF pulse compression using electrically controlled semiconductor switches,” in 12th Workshop Advanced Accelerator Concepts (American Institute of Physics, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

(a) Primary geometry of the active Si waveguide under investigation. (b) Layout with specified doping regions.

Fig. 2.
Fig. 2.

Functionality of the waveguide: (a) confinement of TE polarized light; (b) electrostatics at 4  V bias voltage.

Fig. 3.
Fig. 3.

Carrier distribution (n-type) as a function of applied bias (a) at zero bias voltage, (b) at V=2  V, (c) at V=4  V.

Fig. 4.
Fig. 4.

Changes of waveguide parameters with respect to the changes in bias voltage and uniform doping concentration: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 5.
Fig. 5.

Changes of waveguide parameters with respect to the changes in bias voltage and nonuniform doping concentration: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 6.
Fig. 6.

Changes of waveguide parameters with respect to the changes in bias voltage and Hp: (a) real (RI) versus bias voltage; (b) img (RI) versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 7.
Fig. 7.

Confinement of the mode for different Hp: (a) Hp=50  nm, (b) Hp=120  nm.

Fig. 8.
Fig. 8.

Changes of waveguide parameters with respect to the changes in bias voltage and Wd: (a) imaginary RI versus bias voltage; (b) ML versus bias voltage.

Fig. 9.
Fig. 9.

E-field intensity (in log scale) of the confined mode for different Wd: (a) Wd=300  nm; (b) Wd=700  nm.

Fig. 10.
Fig. 10.

Changes of waveguide parameters with respect to the changes in bias voltage and Ww: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 11.
Fig. 11.

Changes of waveguide parameters with respect to changes in bias voltage and cladding material: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 12.
Fig. 12.

Changes of waveguide parameters with respect to the positive bias voltage and nonuniform changes in doping concentration: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Fig. 13.
Fig. 13.

Field profile of the confined mode with (a) no bend, (b) bending the waveguide in upward direction with 5 μm bend radius, (c) bending in right direction with 10 μm bend radius, (d) bending in downward direction with 5 μm bend radius.

Fig. 14.
Fig. 14.

Changes of waveguide parameters with respect to the changes in doping concentrations at 4  V bias voltage: (a) loss versus doping concentration for upward bending; (b) loss versus doping concentration for right bending; (c) loss versus doping concentration for downward bending; (d) real RI versus doping concentration; (e) Δn versus doping concentration; (f) dispersion versus wavelength.

Fig. 15.
Fig. 15.

Confinement of TM polarized light.

Fig. 16.
Fig. 16.

Changes of waveguide parameters for TM polarization with respect to the changes in bias voltage and nonuniform doping concentration: (a) real RI versus bias voltage; (b) imaginary RI versus bias voltage; (c) ML versus bias voltage; and (d) Δn versus doping concentration.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n+ik=ϵme2ω(nme*ω+ieμe+pmh*ω+ieμh)ϵ0,
n+ik=ϵme2ω2(nme*+pmh*)ϵ0.
Δn=(e2λ28π2c2ϵ0n)(ΔNemce*+ΔNhmch*),Δα=(e2λ34π2c3ϵ0n)(ΔNemce*2μe+ΔNhmch*2μh),
Δn=Δne+Δnh=[8.8×1022(ΔNe)+8.5×1018(ΔNh)0.8],Δα=Δαe+Δαh=8.5×1018(ΔNe)+6×1018(ΔNh),
E(z)=E0eink0z,andPE2,Loss(dB/m)=10log10[P(z=1)/P(z=0)]=10log10[e2ink0/1]=10ni4π/λ0ln10.
GVD=(2πc/vg2λ2)dvg/dω.
Vk+1Vk<δ,
EFnk+1EFnk<δ,EFpk+1EFpk<δ.
E(ρ,y,θ)=f(ρ,y)exp(iβρ0θ)β=neffk0=neff(2π/λ0),

Metrics