Abstract

We demonstrate how a metal wire grating can work as a 45° polarization converter, a quarter-wave retarder, and a half-wave retarder over a broadband terahertz range when set up in total internal reflection geometry. Classical electromagnetic theory is applied to understand the mechanism, and equations to calculate the polarization state of reflected light are derived. We use a metal grating with a period of 20 μm and width of 10 μm on a fused silica surface: linearly polarized terahertz light incident from fused silica with a supercritical incident angle of 52° is totally reflected by the metal grating and air. The polarization of the terahertz light is rotated by 45°, 90°, and circularly polarized by simply rotating the wire grating. The performance is achromatic over the measured range of 0.1–0.7 THz and comparable to commercial visible light wave retarders.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si–SiO2 interface

R. M. A. Azzam and Cristina L. Spinu
J. Opt. Soc. Am. A 21(10) 2019-2022 (2004)

Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings

Nicolas Passilly, Kalle Ventola, Petri Karvinen, Pasi Laakkonen, Jari Turunen, and Jani Tervo
Appl. Opt. 46(20) 4258-4265 (2007)

Tunable reflective liquid crystal terahertz waveplates

Lei Wang, Shijun Ge, Wei Hu, Makoto Nakajima, and Yanqing Lu
Opt. Mater. Express 7(6) 2023-2029 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
    [Crossref]
  2. S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
    [Crossref]
  3. F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
    [Crossref]
  4. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17, 12444–12454 (2009).
    [Crossref]
  5. S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).
  6. Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, “Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues,” Biomed. Opt. Express 7, 4711–4717 (2016).
    [Crossref]
  7. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
    [Crossref]
  8. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18, 12168–12175 (2010).
    [Crossref]
  9. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19, 24884–24889 (2011).
    [Crossref]
  10. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [Crossref]
  11. Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
    [Crossref]
  12. B. Zhang and Y. Gong, “Achromatic terahertz quarter waveplate based on silicon grating,” Opt. Express 23, 14897–14902 (2015).
    [Crossref]
  13. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39, 146–149 (2014).
    [Crossref]
  14. C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
    [Crossref]
  15. J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization,” Opt. Express 17, 7431–7439 (2009).
    [Crossref]
  16. R. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21, 2019–2022 (2004).
    [Crossref]
  17. J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
    [Crossref]
  18. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref]
  19. Z. Huang, E. P. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39, 793–796 (2014).
    [Crossref]
  20. N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
    [Crossref]
  21. K. Shiraishi and K. Muraki, “Metal-film subwavelength-grating polarizer with low insertion losses and high extinction ratios in the terahertz region,” Opt. Express 23, 16676–16681 (2015).
    [Crossref]
  22. X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
    [Crossref]
  23. X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
    [Crossref]
  24. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  25. Thorlabs, Achromatic wave plates, AQWP05M-340 and AGHP05M-340, https://www.thorlabs.com/navigation.cfm?guide_id=2396 .
  26. Tydex, Tunable THz polarization converter, http://www.tydexoptics.com/products/thz_optics/tunable_thz_polarization_converter/ .

2017 (1)

J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

2016 (5)

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, “Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues,” Biomed. Opt. Express 7, 4711–4717 (2016).
[Crossref]

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (3)

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2006 (2)

2005 (1)

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

2004 (1)

1990 (1)

Ahuja, A. T.

Ambacher, O.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Amer, N.

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Antes, J.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Ashida, M.

Ashworth, P. C.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Azzam, R.

Boes, F.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Chan, H. P.

Chen, H.-L.

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Chen, Z.

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Cumming, D. R.

Cundiff, S. T.

Dadap, J. I.

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Dong, H.

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Fan, S.

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Fattinger, C.

Freude, W.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Gallot, G.

Gong, Y.

B. Zhang and Y. Gong, “Achromatic terahertz quarter waveplate based on silicon grating,” Opt. Express 23, 14897–14902 (2015).
[Crossref]

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Grant, J. P.

Grischkowsky, D.

Han, C.

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
[Crossref]

He, Y.

Heinz, T. F.

Henneberger, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hsieh, C.-F.

Huang, Z.

Hurlbut, W. C.

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Hussain, S.

J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Jang, J.-H.

J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Keiding, S.

Khalid, A.

Koch, M.

Koenig, S.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Lee, Y.-S.

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Liu, X.

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Lopez Diaz, D.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Ma, Y.

Masson, J.-B.

Minamide, H.

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Minowa, Y.

Mukai, N.

Muraki, K.

Nagai, M.

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Norris, T.

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Norton, B.

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Notake, T.

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Ohtake, H.

Palmer, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Pan, C.-L.

Pan, R.-P.

Park, H.

Parrott, E. P.

F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
[Crossref]

Z. Huang, E. P. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39, 793–796 (2014).
[Crossref]

Parrott, E. P. J.

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, “Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues,” Biomed. Opt. Express 7, 4711–4717 (2016).
[Crossref]

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Pepper, M.

Pickwell-MacPherson, E.

Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, “Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues,” Biomed. Opt. Express 7, 4711–4717 (2016).
[Crossref]

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
[Crossref]

F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
[Crossref]

Z. Huang, E. P. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39, 793–796 (2014).
[Crossref]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17, 12444–12454 (2009).
[Crossref]

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Pinder, S. E.

Provenzano, E.

Purushotham, A. D.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Saha, S. C.

Scheller, M.

Scherger, B.

Schmogrow, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Shan, J.

Shiraishi, K.

Spinu, C. L.

Takayanagi, J.

Tang, T.-T.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Ung, B. S. Y.

Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, “Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues,” Biomed. Opt. Express 7, 4711–4717 (2016).
[Crossref]

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Ung, B. S.-Y.

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
[Crossref]

van Exter, M.

Vieweg, N.

Wallace, V. P.

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17, 12444–12454 (2009).
[Crossref]

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Woo, J. M.

J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Xu, J.

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

Yan, F.

F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Zhang, B.

Zwick, T.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Adv. Opt. Mater. (1)

X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5, 1600697 (2016).
[Crossref]

APL Photon. (1)

X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1, 076103 (2016).
[Crossref]

Appl. Phys. Lett. (1)

N. Amer, W. C. Hurlbut, B. Norton, Y.-S. Lee, and T. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119, 6813–6818 (2015).
[Crossref]

Nat. Photonics (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Opt. Commun. (1)

Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Sci. Rep. (1)

J. M. Woo, S. Hussain, and J.-H. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Other (3)

S. Fan, B. S. Y. Ung, E. P. J. Parrott, V. P. Wallace, and E. Pickwell-MacPherson, “In vivo terahertz reflection imaging of human scars during and after the healing process,” J. Biophoton. (to be published).

Thorlabs, Achromatic wave plates, AQWP05M-340 and AGHP05M-340, https://www.thorlabs.com/navigation.cfm?guide_id=2396 .

Tydex, Tunable THz polarization converter, http://www.tydexoptics.com/products/thz_optics/tunable_thz_polarization_converter/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the electric (E) fields and magnetic (H) fields above and below the metal wire grating, viewing from (a) the incident plane and (b) the top of the metal grating.

Fig. 2.
Fig. 2.

Diagram of the experimental setup.

Fig. 3.
Fig. 3.

Experimental and theoretical complex reflection coefficients. (a) The magnitude and (b) the phase of rp and rs when the incident signal is p polarized. (c) The magnitude and (d) the phase of rp and rs when the incident signal is s polarized.

Fig. 4.
Fig. 4.

(a) Amplitude ratio (|Erp/Ers|) and (b) phase difference (|φpφs|) between reflected p and s components, when the incident signal is 45° to the s direction and at a 52° incident angle.

Fig. 5.
Fig. 5.

Polarization states of the (a) incident signal and the reflected signals at (b) θ=34°, (c) θ=58.5°, and (d) θ=90°.

Fig. 6.
Fig. 6.

Amplitude ratio (|Erp/Ers|, black line) phase difference (|φpφs|, blue line) between the reflected p and s components, when using Si as a prism and setting the incident angle as 47.5° and the incident light to be 45° linear polarized.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E1x=0,
H1xH2x=0,
E1yE2y=0,
rs=ErsEis=2n1cos2αicosαtsin2θn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ1,
rp=ErpEis=2n1cosαicosαtsinθcosθn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ.
rs=ErsEip=2n1cosαicosαtsinθcosθn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ,
rp=ErpEip=12n1cosαtcos2θn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ.
n1×Eiexp[i(ωtki·r)]+n1×Erexp[i(ωtkr·r)]=n2×Etexp[i(ωtkt·r)],
ki·r=kr·r=kt·r.
n1sinαi=n1sinαr=n2sinαt,
kt=kt1+cot2αt[sinθ,cosθ,cotαt].
kt·Et=0,
kt·Ht=0.
Et=[0,Ety,Etz],
Ht=[Htx,0,Htz].
Ety=Etcos2αtcos2θ+cos2αtsin2θ,
Htx=Htcosθ+sinθcos2αtsin2θcos2αt+cos2θ.
Eiscosθ+Erscosθ+Erpcosαrsinθ=0,Eissinθ+ErssinθErpcosαrcosθ=Etcosαtcos2θ+cos2αtsin2θ,HiscosαisinθHrscosαrsinθ+Hrpcosθ=Htcosθ+sinθcos2αtsin2θcos2αt+cos2θ.
H=nμ0cE.
rs=ErsEis=2n1cos2αicosαtsin2θn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ1,
rp=ErpEis=2nicosαicosαtsinθcosθn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ.
Eipcosαisinθ+Erscosθ+Erpcosαrsinθ=0,Eipcosαicosθ+ErssinθErpcosαrcosθ=Etcosαtcos2θ+cos2αtsin2θ,HipcosθHrscosαrsinθ+Hrpcosθ=Htcosθ+sinθcos2αtsin2θcos2αt+cos2θ.
rs=ErsEip=2n1cosαicosαtsinθcosθn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ,
rp=ErpEip=12n1cosαtcos2θn1cosαt(cos2θ+cos2αisin2θ)+n2cosαicosθ+n2cosαicos2αtsinθ.

Metrics