Abstract

Fiber-optic laser–ultrasound generation is being used in an increasing number of applications, including medical diagnosis, material characterization, and structural health monitoring. However, most currently used fiber-optic ultrasonic transducers allow effective ultrasound generation at only a single location, namely, at the fiber tip, although there have been a few limited proposals for achieving multipoint ultrasound generation along the length of a fiber. Here we present a novel fiber-optic ultrasound transducer that uses the core-offset splicing of fibers to effectively generate ultrasound at multiple locations along the fiber. The proposed laser–ultrasonic transducer can produce a balanced-strength signal between ultrasonic generation points by reasonably controlling the offsets of the fibers. The proposed transducer has other outstanding characteristics, including simple fabrication and low cost.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

Jiajun Tian, Qi Zhang, and Ming Han
Opt. Express 21(5) 6109-6114 (2013)

Broadband miniature fiber optic ultrasound generator

Xiaotian Zou, Nan Wu, Ye Tian, and Xingwei Wang
Opt. Express 22(15) 18119-18127 (2014)

High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite

Nan Wu, Ye Tian, Xiaotian Zou, Vinicius Silva, Armand Chery, and Xingwei Wang
J. Opt. Soc. Am. B 29(8) 2016-2020 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC) (1998), Vol. 2, pp. 948–952.
  2. R. J. Colchester, E. Z. Zhang, C. A. Mosse, and P. C. Breard, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6, 1502–1511 (2015).
    [Crossref]
  3. B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
    [Crossref]
  4. V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
    [Crossref]
  5. P. A. Fomitchov, A. K. Kromine, and S. Krishnaswamy, “Photoacoustic probes for nondestructive testing and biomedical applications,” Appl. Opt. 41, 4451–4459 (2002).
    [Crossref]
  6. E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
    [Crossref]
  7. L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
    [Crossref]
  8. C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24, 20287–20296 (2016).
    [Crossref]
  9. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).
  10. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
    [Crossref]
  11. N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
    [Crossref]
  12. H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
    [Crossref]
  13. J. J. Tian, Q. Zhang, and M. Han, “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings,” Opt. Express 21, 6109–6114 (2013).
    [Crossref]
  14. Z. B. Tian and S. S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27, 2296–2306 (2009).
    [Crossref]
  15. G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
    [Crossref]
  16. L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
    [Crossref]

2016 (1)

2015 (1)

2014 (4)

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
[Crossref]

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
[Crossref]

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

2013 (3)

G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

J. J. Tian, Q. Zhang, and M. Han, “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings,” Opt. Express 21, 6109–6114 (2013).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

2012 (1)

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

2009 (2)

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Z. B. Tian and S. S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27, 2296–2306 (2009).
[Crossref]

2002 (1)

2001 (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).

1997 (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Baldwin, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Belsito, L.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Biagi, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC) (1998), Vol. 2, pp. 948–952.

Breard, P. C.

Brenci, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

Chen, Y. C.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Colchester, R. J.

Ferri, M.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Flanagan, K.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Fomitchov, P. A.

Fontani, S.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

Giurgiutiu, V.

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
[Crossref]

Guo, L. J.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Han, M.

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Hu, C.

Kochergin, E.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Kochergin, V.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Krishnaswamy, S.

Kromine, A. K.

Lao, Z.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Lee, K. T.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Lin, B.

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
[Crossref]

Liu, D.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Lou, S. Q.

G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Lu, P.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Mancarella, F.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Mao, L.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).

Masotti, L.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC) (1998), Vol. 2, pp. 948–952.

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).

Mosse, C. A.

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

Pedrick, M.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Pieraccini, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC) (1998), Vol. 2, pp. 948–952.

Plaisted, T.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Roncaglia, A.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Shi, Z.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Tian, J. J.

Tian, Y.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

Tian, Z. B.

Vannacci, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Veronese, G. P.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Vicari, L.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Wang, A.

Wang, X.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

Wu, N.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

Yam, S. S. H.

Yellampalle, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

Yin, G.

G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Yu, Z.

Zhang, E. Z.

Zhang, J.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Zhang, Q.

Zou, H.

G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Zou, X.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22, 18119–18127 (2014).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24, 085003 (2014).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (2)

G. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57, 39–43 (2014).
[Crossref]

Opt. Rev. (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[Crossref]

Proc. SPIE (3)

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
[Crossref]

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
[Crossref]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
[Crossref]

Sci. Rep. (1)

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted,” Sci. Rep. 2, 989 (2012).
[Crossref]

T. Ultarson. Ferr. (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” T. Ultarson. Ferr. 48, 1669–1680 (2001).

Other (1)

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC) (1998), Vol. 2, pp. 948–952.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Conceptual illustration of multipoint fiber-optic laser–ultrasound generation. (a) Schematic of the proposed system. (b) Structural illustration of an FCOS. (c) Transmission light field distribution of an FCOS with a 4 μm offset along the x axis. (d) Relationship curve between the energy ratio coupled from the core mode to the cladding modes and the dislocation offset of the FCOS.

Fig. 2.
Fig. 2.

Core-offset units with varying dislocation sizes photographed by the fiber fusion splicer with coupling ratios of 20.2%, 28.22%, 31%, 50.3%, and 99.86%, respectively.

Fig. 3.
Fig. 3.

Experimental demonstration. (a) Schematic of the experimental setup. (b) Pictures of core-offset fibers before and after chemical etching. (c) Prepared FCOS-based transducer.

Fig. 4.
Fig. 4.

Laser characteristics and generated ultrasound signal. (a) Laser spectrum after passing through an EDFA. (b) Single laser pulse measured post-EDFA. (c) Laser pulse train with a 3 kHz repetition rate post-EDFA. (d) Narrow ultrasonic pulse train with a repetition rate of 3 kHz generated by the first core-offset unit. (e) Enlarged view of the ultrasonic pulse and (f) Fourier transform of the detected ultrasonic pulse.

Fig. 5.
Fig. 5.

Enlarged view of ultrasonic pulse signals generated from five fiber core-offset units and their respective Fourier transforms.

Fig. 6.
Fig. 6.

Correlation between diameter of core-offset region and ultrasonic intensity.

Metrics