Abstract

We propose a novel waveguide design of a polarization-maintaining few mode fiber (PM-FMF) supporting 10 non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure endows a new degree of freedom to adjust the birefringence of all the guided modes, including the fundamental polarization mode. Numerical simulations demonstrate that, by optimizing the air hole and elliptical-ring core, a PM-FMF supporting 10 distinctive polarization modes has been achieved, and the effective index difference Δneff between the adjacent guided modes could be kept larger than 1.32×104 over the whole C+L band. The proposed fiber structure can be flexibly tailored to support an even larger number of modes in PM-FMF (14-mode PM-FMF has been demonstrated as an example), which can be readily applicable to a scalable mode division multiplexing system.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining fiber composed of an elliptical ring core and two circular air holes

Xiaoqiang Zhang, Yong Jiang, Yong Xu, Ruishan Chen, Anting Wang, Hai Ming, and Weisheng Zhao
Appl. Opt. 58(32) 8865-8870 (2019)

Design of PANDA ring-core fiber with 10 polarization-maintaining modes

Haozhe Yan, Shangyuan Li, Zhengyang Xie, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Photon. Res. 5(1) 1-5 (2017)

Design and analysis of a combined-ring core weakly coupled few-mode fiber with six linearly polarized modes and an ultra-large effective index difference

Yuheng Xie, Li Pei, Jingjing Zheng, Qi Zhao, Tigang Ning, and Jianbin Sun
Appl. Opt. 58(16) 4373-4380 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
    [Crossref]
  2. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28, 662–701 (2010).
    [Crossref]
  3. T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightwave Technol. 34, 582–592 (2016).
    [Crossref]
  4. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
    [Crossref]
  5. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.
  7. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19, 16665–16671 (2011).
    [Crossref]
  8. F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
    [Crossref]
  9. F. M. Ferreira, D. Fonseca, and H. J. A. da Silva, “Design of few-mode fibers with M-modes and low differential node delay,” J. Lightwave Technol. 32, 353–360 (2014).
    [Crossref]
  10. S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.
  11. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. M. Peckham, A. H. McCurdy, and J. R. Lingle, “Mode-division multiplexing over 96  km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
    [Crossref]
  12. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).
  13. N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24, 344–346 (2012).
    [Crossref]
  14. M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.
  15. I. K. Hwang, Y. H. Lee, K. Oh, and D. N. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12, 1916–1923 (2004).
    [Crossref]
  16. Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
    [Crossref]
  17. E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23, 17120–17126 (2015).
    [Crossref]
  18. L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40, 5846–5849 (2015).
    [Crossref]
  19. M. J. Li, X. Chen, D. A. Nolan, G. E. Berkey, J. Wang, W. A. Wood, and L. A. Zenteno, “High bandwidth single polarization fiber with elliptical central air hole,” J. Lightwave Technol. 23, 3454–3460 (2005).
    [Crossref]
  20. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31, 2681–2683 (2006).
    [Crossref]
  21. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009).
    [Crossref]

2016 (1)

2015 (2)

2014 (2)

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

F. M. Ferreira, D. Fonseca, and H. J. A. da Silva, “Design of few-mode fibers with M-modes and low differential node delay,” J. Lightwave Technol. 32, 353–360 (2014).
[Crossref]

2013 (2)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

2009 (1)

2006 (2)

Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31, 2681–2683 (2006).
[Crossref]

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

2005 (1)

2004 (1)

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24, 344–346 (2012).
[Crossref]

Awaji, Y.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Berkey, G. E.

Bolle, C.

Budd, R.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Burrows, E. C.

Chandrasekhar, S.

Chebaane, S.

S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.

Checconi, F.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Chen, X.

Cvijetic, N.

da Silva, H. J. A.

Dimarcello, F. V.

Dong, X.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Dupuis, N.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Esmaeelpour, M.

Essiambre, R. J.

Fathallah, H.

S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.

Ferreira, F.

F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
[Crossref]

Ferreira, F. M.

Fini, J. M.

Fishteyn, M.

Fonseca, D.

F. M. Ferreira, D. Fonseca, and H. J. A. da Silva, “Design of few-mode fibers with M-modes and low differential node delay,” J. Lightwave Technol. 32, 353–360 (2014).
[Crossref]

F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
[Crossref]

Foschini, G. J.

Fuentes, P.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Galtarossa, A.

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

Gnauck, A. H.

Goebel, B.

Han, S. R.

Hanzawa, N.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Hayashi, T.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Hirano, M.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Hwang, I. K.

Ip, E.

Jeong, Y.

Jin, L.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Jung, H.

Jung, Y.

kai, G.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Kanno, A.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Kanonakis, K.

Kasahara, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Kawanishi, T.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Kim, S.

Klaus, W.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Koshiba, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref]

Kramer, G.

LaRochelle, S.

Lee, B.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Lee, S.

S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009).
[Crossref]

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

Lee, Y. H.

Li, M. J.

Li, Y.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Liñares, J.

Lingle, J. R.

Liu, J.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Liu, X.

Liu, Y.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24, 344–346 (2012).
[Crossref]

Lu, Y.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Luis, R. S.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Machhout, M.

S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.

Marciante, J.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Matsui, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Matsuo, S.

Mattes, O.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

McCurdy, A. H.

Mendinueta, J. M. D.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Milione, G.

Minkenberg, C.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Miyamoto, Y.

Mizuno, T.

Monberg, E. M.

Montero, C.

Moreno, V.

Mumtaz, S.

Nolan, D. A.

Oh, K.

Paek, U. C.

Palmieri, L.

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

Park, J.

Park, M.

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

Payne, D. N.

Peckham, D. M.

Peng, G.

Petrini, F.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Prieto, X.

Puttnam, B. J.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Randel, S.

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24, 344–346 (2012).
[Crossref]

Ryf, R.

Rylyakov, A.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Saitoh, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref]

Sakaguchi, J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Sakamoto, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Sano, A.

Schares, L.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Schenato, L.

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

Schow, C.

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

Seleem, H.

S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.

Sierra, A.

Silva, H.

F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
[Crossref]

Stone, J.

Sun, T.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Takara, H.

Takenaga, K.

Tamura, Y.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

Taunay, T. F.

Tsujikawa, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Tu, J.

Wada, N.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Wang, J.

Wang, L.

Wang, Z.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Winzer, P. J.

Wood, W. A.

Yamamoto, F.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

Yan, M. F.

Yuan, S.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Yue, Y.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Zenteno, L. A.

Zhang, C.

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

Zhu, B.

IEEE Micro (1)

L. Schares, B. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34, 52–63 (2014).
[Crossref]

IEEE Photon. J. (1)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photon. J. 5, 7201207 (2013).

IEEE Photon. Technol. Lett. (3)

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24, 344–346 (2012).
[Crossref]

Y. Yue, G. kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006).
[Crossref]

F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with arbitrary and flattened differential mode delay,” IEEE Photon. Technol. Lett. 25, 438–441 (2013).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (4)

Opt. Lett. (2)

Other (4)

M. Park, L. Schenato, L. Palmieri, S. Lee, A. Galtarossa, and K. Oh, “Dual-core elliptical hollow optical fiber with linearly wavelength-decreasing birefringence,” in European Conference on Optical Communication (ECOC) (2010), paper P1.04.

S. Chebaane, H. Seleem, H. Fathallah, and M. Machhout, “Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks,” in International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 262–265.

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (ECOC) (2015), paper PDP3–1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J. M. D. Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (2013), paper OW1I.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Cross section of the proposed elliptical-ring core fiber with a central circular air hole. Key waveguide parameters are the cladding diameter d cladding , the air hole radius r , the major axes of the ring core, b x and b y , the minor axes, a x and a y , the cladding’s and core’s materials, SiO 2 and GeO 2 -doped SiO 2 .
Fig. 2.
Fig. 2. In the situation that n ring = 1.478 , n cladding = 1.444 , d cladding = 125    μm , η = 1.4 , ρ = 0.67 , b x = 5.06    μm , and λ = 1.55    μm : (a) the Δ n eff between the 10 adjacent modes as a function of the air hole radius r ; (b) magnified image of the light orange rectangle in (a); (c) the Δ n eff between the first seven adjacent modes with increasing of r ; (d) the Δ n eff between the last four adjacent modes with increasing of r . Note that the lines with symbols are the Δ n eff between orthogonal polarization of the same mode (modal birefringence), while the lines without symbols are the mode group separation.
Fig. 3.
Fig. 3. Transverse electrical fields, amplitudes, and directions of the vector modes at 1.55 μm for different sizes of air hole: (a)  r = 0    μm , (b)  r = 0.7    μm , (c)  r = 0.9    μm , (d)  r = 1.2    μm , and (e)  r = 1.7    μm .
Fig. 4.
Fig. 4. (a) Effective refractive indices ( n eff ) of all guided modes. (b) Chromatic dispersions of all guided modes. (c)  Δ n eff between all adjacent guided modes, as a function of the wavelength of λ , for the 10-mode PMF with r = 1.7    μm , n ring = 1.478 , n cladding = 1.444 , d cladding = 125    μm , η = 1.4 , ρ = 0.67 , and b x = 5.06    μm .
Fig. 5.
Fig. 5. Transverse electrical fields, amplitudes and directions of the vector modes at 1.55 μm for the optimum air hole radius r = 1.8    μm .
Fig. 6.
Fig. 6. (a) Effective refractive indices ( n eff ) of all guided modes. (b) Chromatic dispersions of all guided modes. (c)  Δ n eff between all adjacent guided modes, as a function of the wavelength of λ , for the 14-mode PMF.

Metrics