Abstract

In this work, we investigate the methods to improve the performance of the swept source at 1.0 μm based on a polygon scanner, including in-cavity parameters and booster structures out of the cavity. The three in-cavity parameters are the cavity length, the rotating speed of the polygon scanner, and the in-cavity energy. With the decrease of cavity length, the spectrum bandwidth becomes wider and the duty cycle becomes higher. With the increase of the rotating speed of the polygon, the spectrum bandwidth becomes narrower, and the duty cycle becomes lower but the repetition rate becomes higher. With more energy in-cavity, the spectrum bandwidth becomes wider and the duty cycle becomes higher. The booster structures include the buffered structure, secondary amplifier, and dual-semiconductor optical amplifier configuration, which are used to increase the sweep frequency to 86 kHz, the output power to 18 mW, and the tuning bandwidth to 131 nm, respectively.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma
Opt. Lett. 28(20) 1981-1983 (2003)

Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

Sebastian Marschall, Thomas Klein, Wolfgang Wieser, Benjamin R. Biedermann, Kevin Hsu, Kim P. Hansen, Bernd Sumpf, Karl-Heinz Hasler, Götz Erbert, Ole B. Jensen, Christian Pedersen, Robert Huber, and Peter E. Andersen
Opt. Express 18(15) 15820-15831 (2010)

Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography

Sang-Won Lee, Hyun-Woo Song, Moon-Youn Jung, and Seung-Hwan Kim
Opt. Express 19(22) 21227-21237 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Chinn, E. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [Crossref]
  2. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
    [Crossref]
  3. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [Crossref]
  4. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref]
  5. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
    [Crossref]
  6. V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
    [Crossref]
  7. D. John, C. Burgner, B. Potsaid, M. Robertson, B. Lee, W. Choi, A. Cable, J. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33, 3461–3468 (2015).
    [Crossref]
  8. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  9. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
    [Crossref]
  10. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser,” Opt. Express 19, 3044–3062 (2011).
    [Crossref]
  11. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
    [Crossref]
  12. S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
    [Crossref]
  13. Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
    [Crossref]
  14. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).
    [Crossref]
  15. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
    [Crossref]
  16. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
    [Crossref]
  17. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [Crossref]
  18. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [Crossref]
  19. C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source,” Opt. Express 16, 21105–21118 (2008).
    [Crossref]
  20. M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, and V. X. D. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett. 34, 2814–2816 (2009).
    [Crossref]
  21. C. Chong, A. Morosawa, and T. Sakai, “High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235–242 (2008).
    [Crossref]
  22. S. M. R. Motaghian Nezam, “High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography,” Opt. Lett. 33, 1741–1743 (2008).
    [Crossref]
  23. C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with simple configuration for optical coherence tomography,” Proc. SPIE 6627, 662705 (2007).
    [Crossref]
  24. T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
    [Crossref]
  25. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
    [Crossref]
  26. Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
    [Crossref]
  27. S.-W. Lee, H.-W. Song, M.-Y. Jung, and S.-H. Kim, “Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 19, 21227–21237 (2011).
    [Crossref]
  28. X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0  μm for ultrafast quantitative phase imaging,” Biomed. Opt. Express 6, 3855–3864 (2015).
    [Crossref]
  29. T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
    [Crossref]
  30. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
    [Crossref]
  31. S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
    [Crossref]

2015 (3)

2014 (2)

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

2013 (1)

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

2012 (1)

S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
[Crossref]

2011 (2)

2010 (5)

Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
[Crossref]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
[Crossref]

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref]

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (2)

2006 (3)

2005 (3)

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
[Crossref]

2003 (3)

1997 (1)

Adler, D. C.

Ai, S.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

Andersen, P. E.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Barry, S.

Baumann, B.

Biedermann, B.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Biedermann, B. R.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[Crossref]

Bouma, B. E.

Burgner, C.

Burgnera, C.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Cable, A.

Cable, A. E.

Cableb, A. E.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Chavez-Pirson, A.

Chen, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Chen, Z.

Chinn, S. R.

Choi, W.

Choic, W.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Chong, C.

C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source,” Opt. Express 16, 21105–21118 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235–242 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with simple configuration for optical coherence tomography,” Proc. SPIE 6627, 662705 (2007).
[Crossref]

Chong, C. H.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

Chuck, R.

de Boer, J. F.

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

Erbert, G.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

Fujimotoc, J. G.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Gangjun, L.

Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
[Crossref]

Gorczynska, I.

Han, S.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Hasler, K.-H.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Heimb, P. J. S.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Hermann, B.

Hsieh, J.-C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

Hsu, K.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref]

Huang, D.

Huber, R.

Huo, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Iftimia, N.

Isamoto, K.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

Jayaraman, V.

Jayaramana, V.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Jensen, O. B.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Jeon, M.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Jiang, J. Y.

Jiangb, J. Y.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

John, D.

Johna, D. D.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Jun, Z.

Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
[Crossref]

Jung, M.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Jung, M.-Y.

Kim, N.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Kim, S.-H.

klein, T.

S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
[Crossref]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref]

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Ko, M.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Kwon, Y.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Lau, A. K. S.

Lee, B.

Lee, E. C. W.

Lee, K. K. C.

Lee, S.-W.

Leung, M. K. K.

Liao, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Lim, H.

Luc, C. D.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Mariampillai, A.

Marschall, S.

S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
[Crossref]

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Morosawa, A.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source,” Opt. Express 16, 21105–21118 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235–242 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with simple configuration for optical coherence tomography,” Proc. SPIE 6627, 662705 (2007).
[Crossref]

Motaghian Nezam, S. M. R.

Mujat, M.

Munce, N. R.

Nelson, J.

Oh, W. Y.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[Crossref]

Oh, W.-Y.

Park, I.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Park, K.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Pedersen, C.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
[Crossref]

Potsaid, B.

Potsaidb, B.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Považay, B.

Reisen, P.

Reiser, B.

Robertson, M.

Robertsona, M. E.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Ryu, H.

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Sakai, T.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source,” Opt. Express 16, 21105–21118 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235–242 (2008).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with simple configuration for optical coherence tomography,” Proc. SPIE 6627, 662705 (2007).
[Crossref]

Sattmann, H.

Schuman, J. S.

Shishkov, M.

Song, H.-W.

Srinivasan, V. J.

Standish, B. A.

Sumpf, B.

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Suzuki, T.

Swanson, E.

Taira, K.

Tearney, G. J.

Thomas, W.

S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
[Crossref]

Totsuka, K.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

Tsaic, T. H.

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

Tsia, K. K.

Unterhuber, A.

Vakoc, B. J.

Vitkin, I. A.

Wang, C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Wang, Y.

Wei, X.

Wieser, W.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref]

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

Windeler, R.

Wojtkowski, M.

Wong, K. K. Y.

Xu, Y.

Xue, P.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Yang, V. X. D.

Yun, S. H.

E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
[Crossref]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[Crossref]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[Crossref]

Zhang, J.

Zhang, N.

Zhang, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

Zhang, X.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

Zheng, J.-g.

Zhongping, C.

Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chong, A. Morosawa, and T. Sakai, “High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235–242 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (2)

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[Crossref]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16, 293–295 (2004).
[Crossref]

J. Biomed. Opt. (1)

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source,” J. Biomed. Opt. 20, 030503 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (10)

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[Crossref]

S.-W. Lee, H.-W. Song, M.-Y. Jung, and S.-H. Kim, “Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 19, 21227–21237 (2011).
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

C. Chong, T. Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source,” Opt. Express 16, 21105–21118 (2008).
[Crossref]

E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
[Crossref]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref]

Opt. Lett. (8)

S. R. Chinn, E. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[Crossref]

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[Crossref]

T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett. 39, 247–250 (2014).
[Crossref]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
[Crossref]

S. M. R. Motaghian Nezam, “High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography,” Opt. Lett. 33, 1741–1743 (2008).
[Crossref]

M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, and V. X. D. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett. 34, 2814–2816 (2009).
[Crossref]

Proc. SPIE (6)

S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “High-power FDML laser for swept source-OCT at 1060  nm,” Proc. SPIE 7715, 77150B (2010).
[Crossref]

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE 7554, 75542Q (2010).
[Crossref]

V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, and A. E. Cableb, “Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging,” Proc. SPIE 8934, 893402 (2014).
[Crossref]

S. Marschall, T. klein, and W. Thomas, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm,” Proc. SPIE 8213, 82130R (2012).
[Crossref]

Z. Jun, L. Gangjun, and C. Zhongping, “Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers,” Proc. SPIE 7554, 75541I (2010).
[Crossref]

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with simple configuration for optical coherence tomography,” Proc. SPIE 6627, 662705 (2007).
[Crossref]

Sensors (1)

Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, and M. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors 13, 9669–9678 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the structure of the swept source.
Fig. 2.
Fig. 2. Schematic of booster structures: (a) buffered structure, (b) secondary amplifier structure, and (c) dual-SOA structure.
Fig. 3.
Fig. 3. Single wavelength output of the swept source when the polygon scanner stops.
Fig. 4.
Fig. 4. Output of the swept source with different cavity lengths. (a) Output spectra of the swept source. (b) Oscilloscope trace of the swept source.
Fig. 5.
Fig. 5. Output of the swept source with different rotating speeds of polygon mirror. (a) Output spectra of the swept source. (b) Oscilloscope trace of the swept source.
Fig. 6.
Fig. 6. Output of the swept source with different coupling ratios. (a) Output spectra of the swept source. (b) Oscilloscope trace of the swept source.
Fig. 7.
Fig. 7. Output of the swept source with buffered and without buffered. (a) Output spectra of the swept source. (b) Oscilloscope trace of the swept source.
Fig. 8.
Fig. 8. Injected currents changed from 50 to 300 mA. (a) Output spectra of the laser. (b) Output power versus the injected current.
Fig. 9.
Fig. 9. Output of the swept source with SOA1+SOA2. (a) Output spectra of the swept source. (b) Oscilloscope trace of the swept source.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FSR=2*p*Δα*cos(θ0),

Metrics