Abstract

The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields. As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering (STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering (SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study on stimulated Rayleigh scattering in optical fibers

Tao Zhu, Xiaoyi Bao, Liang Chen, Hao Liang, and Yongkang Dong
Opt. Express 18(22) 22958-22963 (2010)

Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering

Shihong Huang, Tao Zhu, Guolu Yin, Tianyi Lan, Ligang Huang, Fuhui Li, Yongzhong Bai, Dingrong Qu, Xianbin Huang, and Feng Qiu
Opt. Lett. 42(24) 5286-5289 (2017)

Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides

Sebastian Jakobs, Alexander Petrov, and Manfred Eich
J. Opt. Soc. Am. B 31(2) 178-188 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
    [Crossref]
  2. A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
    [Crossref]
  3. K. Feng, J. Cui, H. Dang, S. Zhao, W. Wu, and J. Tan, “Investigation and development of a high spectral resolution coherent optical spectrum analysis system,” Opt. Express 24, 25389–25402 (2016).
    [Crossref]
  4. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550  nm (June 2003),” J. Lightwave Technol. 22, 57–62 (2004).
    [Crossref]
  5. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400  mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36, 3708–3710 (2011).
    [Crossref]
  6. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24, 2179–2183 (2006).
    [Crossref]
  7. D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
    [Crossref]
  8. F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
    [Crossref]
  9. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
    [Crossref]
  10. S. R. Bickham, A. Kobyakov, and S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference (2006), paper OTuA3.
  11. F. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
    [Crossref]
  12. N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
    [Crossref]
  13. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [Crossref]
  14. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
    [Crossref]
  15. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
    [Crossref]
  16. C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
    [Crossref]
  17. S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.
  18. W. K. Burns, M. Abebe, and C. A. Villarruel, “Parabolic model for shape of fiber taper,” Appl. Opt. 24, 2753–2755 (1985).
    [Crossref]
  19. R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003).
  20. M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23, 6803–6808 (2015).
    [Crossref]

2016 (3)

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

K. Feng, J. Cui, H. Dang, S. Zhao, W. Wu, and J. Tan, “Investigation and development of a high spectral resolution coherent optical spectrum analysis system,” Opt. Express 24, 25389–25402 (2016).
[Crossref]

2015 (1)

2011 (2)

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400  mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36, 3708–3710 (2011).
[Crossref]

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

2010 (2)

2006 (1)

2004 (1)

2001 (1)

1996 (1)

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

1995 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[Crossref]

1993 (2)

F. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[Crossref]

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[Crossref]

1986 (1)

C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
[Crossref]

1985 (1)

Abebe, M.

Andrekson, P.

Bao, X.

Bergman, A.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Bickham, S. R.

S. R. Bickham, A. Kobyakov, and S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference (2006), paper OTuA3.

Boyd, R. W.

R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003).

Burns, W. K.

Chang, D.

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

Chen, D.

Chen, H.

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

Chen, L.

Chen, M.

M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23, 6803–6808 (2015).
[Crossref]

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

Chen, W.

Chernikov, S.

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

Chowdhury, D.

Cui, J.

Dambul, K. D.

S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.

Dang, H.

Davidi, R.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Ding, Z.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Dong, Y.

Dross, F.

Du, Y.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Farnell, G. W.

C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
[Crossref]

Feng, K.

Geng, J.

Guy, M.

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

Hambali, N. A. M. A.

S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.

Hansryd, J.

Hu, Y.

Ibrahim, S. A.

S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.

Imai, T.

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[Crossref]

Jen, C.-K.

C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
[Crossref]

Jiang, J.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Jiang, S.

Kaneda, Y.

Knudsen, S.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
[Crossref]

S. R. Bickham, A. Kobyakov, and S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference (2006), paper OTuA3.

Kong, H.

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

Langer, T.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Li, S.

S. R. Bickham, A. Kobyakov, and S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference (2006), paper OTuA3.

Liang, H.

Liu, K.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Liu, T.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Meng, Z.

Muys, W.

F. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[Crossref]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[Crossref]

Ovadia, L.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Peng, M.

Peyghambarian, N.

Qian, Q.

Qiu, J.

Safaai-Jazi, A.

C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
[Crossref]

Sauer, M.

Shalev, A. I.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Shen, S.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[Crossref]

Spiegelberg, C.

Stewart, G.

Syahali, S.

S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.

Tan, J.

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[Crossref]

Taylor, J.

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

Tur, M.

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

Villarruel, C. A.

Wang, J.

Wei, X.

Westlund, M.

Whitenett, G.

Willems, F.

F. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[Crossref]

Wu, W.

Xie, S.

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

Xu, S.

Yang, S.

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

Yang, Z.

Yin, F.

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

Yoshizawa, N.

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[Crossref]

Zhang, Q.

Zhang, W.

Zhao, S.

Zhou, Y.

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

Zhu, T.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Electron. Lett. (3)

D. Chang, M. Guy, S. Chernikov, J. Taylor, and H. Kong, “Single-frequency erbium fiber laser using the twisted-mode technique,” Electron. Lett. 32, 1786–1787 (1996).
[Crossref]

F. Willems and W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[Crossref]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (3)

T. Liu, Y. Du, Z. Ding, K. Liu, Y. Zhou, and J. Jiang, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photon. Technol. Lett. 28, 771–774 (2016).
[Crossref]

A. Bergman, R. Davidi, A. I. Shalev, L. Ovadia, T. Langer, and M. Tur, “Increasing the measurement dynamic range of Rayleigh-based OFDR interrogator using an amplifying add-on module,” IEEE Photon. Technol. Lett. 28, 2621–2624 (2016).
[Crossref]

F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity,” IEEE Photon. Technol. Lett. 23, 1658–1660 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C.-K. Jen, A. Safaai-Jazi, and G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 634–643 (1986).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Lett. (1)

Other (3)

S. R. Bickham, A. Kobyakov, and S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference (2006), paper OTuA3.

S. A. Ibrahim, N. A. M. A. Hambali, K. D. Dambul, and S. Syahali, “Mode power evolution in tapered single-mode fiber,” in International Symposium on Telecommunication Technologies (ISTT) (2012), pp. 38–41.

R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Typical sketch of a tapered fiber, where w and D are diameters of the waist and conventional SMF, respectively; the repetition length Ltaper is the distance between two adjacent tapers; lwaist, ltrans, and ltaper are the lengths of the waist region, transition region, and tapered region.
Fig. 2.
Fig. 2. Simulation results: (a) Aeff and BFS versus core radius: (b) BGS versus waist, (c) total generated Stokes power versus waist, (d) BGS versus rtaper, and (e) total generated stokes power versus rtaper.
Fig. 3.
Fig. 3. Experimental results of SBS suppression method: (a) experimental setup; (b)–(e) theoretical/experimental power ratio between the SBS and Rayleigh scattering peaks versus rtaper when the waist is 105, 90, 75, and 60 μm, respectively; (f) optical power spectra of backward-scattered light in conventional SMF and tapered fibers (rtaper=0.02 and w=75  μm) with the same pump power.
Fig. 4.
Fig. 4. Variation tendency of the scattered optical power when the optical power of incident light changes.
Fig. 5.
Fig. 5. Schematic diagram of the tunable STRS-based SLM laser with ultranarrow linewidth.
Fig. 6.
Fig. 6. Spectra detected by delayed self-heterodyne method: (a) without secondary cavities, (b) with secondary cavities, (c) without linewidth compression device, and (d) with linewidth compression device.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

PStokesz=[αg0Aao(wB/2)2PPump(0)eαz(vStokesvPump+vB)2+(wB/2)2]PStokes,
PStokes(vStokes,z0)=PStokes(vStokes,L)exp[Lz0g0Aeff(wB/2)2(vStokesvPump+vB)2+(wB/2)2PPump(0)eαzdzα]2kTvStokesG(vStokes,z0)vBexp[PPump(0)],
G(vStokes,z0)=exp[Lz0g0Aeff(wB/2)2(vStokesvPump+vB)2+(wB/2)2dz].
PStokes=2kTvBvStokesG(vStokes,0)exp[PPump(0)]dvStokes.
{u1J1(u1)J0(u1)=u2K1(u2)K0(u2)u1=2πvBa(1VL1)2(1Vphase)2u2=2πvBa(1Vphase)2(1VL2)2,
Aeff(z)πa2(z)[0.651.62V3/2(z)+2.88V6(z)]2,

Metrics