Abstract

A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating (LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG

Yuya Takubo and Shinji Yamashita
Opt. Express 21(4) 5130-5139 (2013)

Time and Fourier domain jointly mode locked frequency comb swept fiber laser

Minggui Wan, Feng Li, Xinhuan Feng, Xudong Wang, Yuan Cao, Bai-ou Guan, Dongmei Huang, Jinhui Yuan, and P. K. A. Wai
Opt. Express 25(26) 32705-32712 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
    [Crossref]
  2. C. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
    [Crossref]
  3. D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, and X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).
    [Crossref]
  4. S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
    [Crossref]
  5. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [Crossref]
  6. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref]
  7. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  8. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [Crossref]
  9. M. Y. Jeon, J. Zhang, Q. Wang, and Z. P. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength-swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).
    [Crossref]
  10. W. Wieser, T. Klein, D. C. Adler, F. Trepanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
    [Crossref]
  11. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).
    [Crossref]
  12. Y. Takubo and S. Yamashita, “In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning,” IEEE Photon. Technol. Lett. 24, 979–981 (2012).
    [Crossref]
  13. Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21, 5130–5139 (2013).
    [Crossref]
  14. M. G. Wan, L. Wang, F. Li, Y. Cao, X. D. Wang, X. H. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24, 27614–27621 (2016).
    [Crossref]
  15. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
    [Crossref]
  16. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
    [Crossref]
  17. J. Xu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39, 622–625 (2014).
    [Crossref]
  18. T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
    [Crossref]
  19. S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
    [Crossref]
  20. K. Chan and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
    [Crossref]
  21. J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).
  22. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
    [Crossref]
  23. Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
    [Crossref]

2016 (1)

2014 (3)

2013 (2)

2012 (4)

D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, and X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).
[Crossref]

Y. Takubo and S. Yamashita, “In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning,” IEEE Photon. Technol. Lett. 24, 979–981 (2012).
[Crossref]

W. Wieser, T. Klein, D. C. Adler, F. Trepanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref]

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
[Crossref]

2010 (2)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

2008 (1)

2006 (4)

2005 (1)

2003 (1)

2002 (1)

C. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

1999 (1)

K. Chan and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[Crossref]

1998 (1)

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Adler, D. C.

Ahn, T. J.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
[Crossref]

Asano, M.

Azana, J.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
[Crossref]

Bao, X. Y.

Beauchesne, G. A.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Bosco, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Boudoux, C.

Bouma, B. E.

Brennan, J. F.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Byrd, C. H.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Cao, Y.

Carena, A.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Chan, K.

K. Chan and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[Crossref]

Chen, L.

Chen, Z. P.

Eigenwillig, C. M.

Elder, D. E.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Feng, X. H.

Forghieri, F.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Fujimoto, J. G.

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Guan, B. O.

Hernadez, E.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Hong, C. S.

C. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Hsiang, W. W.

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

Hsu, K.

Huber, R.

Jeon, M. Y.

Jian, Y. T.

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Jyu, S. S.

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

Kampik, A.

Karpf, S.

Kim, D. Y.

Klein, T.

Lai, Y.

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Li, F.

Li, W. H.

Lin, Q.

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Liu, L. L.

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Liu, S. F.

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

Matthews, M. R.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Moon, S.

Neubauer, A.

Park, Y.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
[Crossref]

Poggiolini, P.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Qin, Z. G.

Reznicek, L.

Ryu, C. Y.

C. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Savory, S.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Schmitt, J. M.

Shu, C.

K. Chan and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[Crossref]

Siddiqui, M.

Sinha, P. G.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Taira, K.

Takubo, Y.

Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21, 5130–5139 (2013).
[Crossref]

Y. Takubo and S. Yamashita, “In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning,” IEEE Photon. Technol. Lett. 24, 979–981 (2012).
[Crossref]

Tearney, G. J.

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Tozburun, S.

Trepanier, F.

Tsia, K. K.

Vakoc, B. J.

Valenti, J. A.

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Wai, P. K. A.

Wan, M. G.

Wang, L.

Wang, Q.

Wang, X. D.

Wang, Z.

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Wieser, W.

Wojtkowski, M.

Wong, K. K.

Wu, C. Q.

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Xu, J.

Yamashita, S.

Yun, S. H.

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Zhang, C.

Zhang, J.

Zhou, D. P.

Appl. Phys. Lett. (1)

K. Chan and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[Crossref]

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum (1)

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).
[Crossref]

Y. Takubo and S. Yamashita, “In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning,” IEEE Photon. Technol. Lett. 24, 979–981 (2012).
[Crossref]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).
[Crossref]

Opt. Express (9)

M. Y. Jeon, J. Zhang, Q. Wang, and Z. P. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength-swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).
[Crossref]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).
[Crossref]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
[Crossref]

Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21, 5130–5139 (2013).
[Crossref]

M. G. Wan, L. Wang, F. Li, Y. Cao, X. D. Wang, X. H. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24, 27614–27621 (2016).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref]

D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, and X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).
[Crossref]

Smart Mater. Struct. (1)

C. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Other (1)

J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Topology diagram of a wavelength-swept fiber laser based on intracavity pulse stretching and compression.
Fig. 2.
Fig. 2. Topology diagram of wavelength-swept fiber laser based on an LC-FBG.
Fig. 3.
Fig. 3. Schematic of the proposed fiber laser based on an LC-FBG.
Fig. 4.
Fig. 4. (a) Reflection spectrum and (b) the transmission spectrum of the LC-FBG.
Fig. 5.
Fig. 5. (a) Wide spectrum at the laser output of OC-1. (b) Output pulse train with a detailed waveform in the inset.
Fig. 6.
Fig. 6. RF spectrum at the laser output of OC-1.
Fig. 7.
Fig. 7. Output pulse train with a detailed waveform in the inset from output port OC-1.
Fig. 8.
Fig. 8. (a) Spectra and (b) pulse waveforms of the laser output for six wavelengths switched from 1549.72 to 1550.72 nm.

Metrics