Abstract

In this paper, we present an ultra-compact 1D photonic crystal (PhC) Bragg grating design on a thin film lithium niobate slot waveguide (SWG) via 2D- and 3D-FDTD simulations. 2D-FDTD simulations are employed to tune the photonic bandgap (PBG) size, PBG center, cavity resonance wavelength, and the whole size of PhC. 3D-FDTD simulations are carried out to model the real structure by varying different geometrical parameters such as SWG height and PhC size. A moderate resonance quality factor Q of about 300 is achieved with a PhC size of only 0.5  μm×0.7  μm×6  μm. The proposed slot Bragg grating structure is then exploited as an electric field (E-field) sensor. The sensitivity is analyzed by 3D-FDTD simulations with a minimum detectable E-field as small as 23  mV/m. The possible fabrication process of the proposed structure is also discussed. The compact size of the proposed slot Bragg grating structure may have applications in on-chip E-field sensing, optical filtering, etc.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis

Wentao Qiu, Abdoulaye Ndao, Huihui Lu, Maria-Pilar Bernal, and Fadi Issam Baida
Opt. Express 24(18) 20196-20209 (2016)

Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings

Shengbao Wu and Jinbiao Xiao
Appl. Opt. 56(17) 4892-4899 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
    [Crossref]
  2. Y. Amnon and Y. Pochi, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Blackwell, 2002).
  3. www.nanoln.com .
  4. W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
    [Crossref]
  5. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref]
  6. C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
    [Crossref]
  7. J. Xia, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Hybrid silicon slotted photonic crystal waveguides: how does third order nonlinear performance scale with slow light?” Photon. Res. 4, 257–261 (2016).
    [Crossref]
  8. A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
    [Crossref]
  9. X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21, 19029–19039 (2013).
    [Crossref]
  10. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
    [Crossref]
  11. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
    [Crossref]
  12. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
    [Crossref]
  13. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
    [Crossref]
  14. P. Delaye, M. Astic, R. Frey, and G. Roosen, “Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal,” J. Opt. Soc. Am. B 22, 2494–2504 (2005).
    [Crossref]
  15. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. W. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
    [Crossref]
  16. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref]
  17. J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
    [Crossref]
  18. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlstr, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform,” Opt. Express 15, 6846–6856 (2007).
    [Crossref]
  19. J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
    [Crossref]
  20. R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ=1550  nm,” Opt. Express 15, 17967–17972 (2007).
    [Crossref]
  21. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261 (2009).
    [Crossref]
  22. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  23. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
    [Crossref]
  24. H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from RIDGE waveguides to photonic crystal structures,” in European Conference on Integrated Optics (2008).

2016 (2)

J. Xia, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Hybrid silicon slotted photonic crystal waveguides: how does third order nonlinear performance scale with slow light?” Photon. Res. 4, 257–261 (2016).
[Crossref]

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

2015 (1)

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (3)

2010 (1)

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

2009 (1)

2008 (1)

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

2007 (3)

2006 (2)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

2005 (2)

P. Delaye, M. Astic, R. Frey, and G. Roosen, “Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal,” J. Opt. Soc. Am. B 22, 2494–2504 (2005).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

2004 (2)

Almeida, V. R.

Amnon, Y.

Y. Amnon and Y. Pochi, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Blackwell, 2002).

Astic, M.

Baets, R.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Baida, F. I.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
[Crossref]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

Bainier, C.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Barrios, C. A.

Bernal, M. P.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Bernal, M.-P.

Bienstman, P.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Blasco, J.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Caër, C.

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Casquel, R.

Cassan, E.

J. Xia, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Hybrid silicon slotted photonic crystal waveguides: how does third order nonlinear performance scale with slow light?” Photon. Res. 4, 257–261 (2016).
[Crossref]

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Chen, R. T.

Chrostowski, L.

Claes, T.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Collet, M.

Combrié, S.

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Cosentino, A.

A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
[Crossref]

Courjal, N.

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
[Crossref]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

De Leonardis, F.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Delaye, P.

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Dong, P.

Fedeli, J. M.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Feng, N.

Flueckiger, J.

Frey, R.

Galán, J. V.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Griol, A.

Grist, S.

Guyot, C.

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]

Gylfason, K. B.

Hameed, N. M.

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

Herzig, H. P.

A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
[Crossref]

Holgado, M.

Hong, C.

Hosseini, A.

Hu, H.

Hui, H.

H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from RIDGE waveguides to photonic crystal structures,” in European Conference on Integrated Optics (2008).

Jaeger, N. A. F.

Jen, A. K.-Y.

Jordana, E.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Kimerling, L.

Lacour, F.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Lipson, M.

Lu, H.

Luo, J.

Lysebettens, J. V.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Maillotte, H.

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

Martí, J.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Martínez, A.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Martínez, J. M.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Merolla, J. M.

Michel, J.

Ndao, A.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

Panepucci, R. R.

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Pochi, Y.

Y. Amnon and Y. Pochi, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Blackwell, 2002).

Qiu, W.

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261 (2009).
[Crossref]

H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from RIDGE waveguides to photonic crystal structures,” in European Conference on Integrated Optics (2008).

Roosen, G.

Rossi, A. D.

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Roussey, M.

A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
[Crossref]

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

Roux, X. L.

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Sabac, A.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Sadani, B.

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

Sánchez, B.

Sanchis, P.

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Schrauwen, J.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Serna, S.

Smith, N.

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261 (2009).
[Crossref]

H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from RIDGE waveguides to photonic crystal structures,” in European Conference on Integrated Optics (2008).

Sohlstr, H.

Spajer, M.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Stenger, V.

Subbaraman, H.

Sun, R.

Tan, Q.

A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
[Crossref]

Thourhout, D. V.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Ulliac, G.

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

Vivien, L.

Vos, K. D.

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

Wang, S.

Wang, X.

Xia, J.

Xu, Q.

Zhan, Q. W.

Zhang, W.

Zhang, X.

App. Phy. Lett. (1)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” App. Phy. Lett. 89, 241110 (2006).
[Crossref]

Appl. Phys. B (1)

W. Qiu, M.-P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118, 261–267 (2015).
[Crossref]

Appl. Phys. Lett. (1)

C. Caër, S. Combrié, X. L. Roux, E. Cassan, and A. D. Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008).
[Crossref]

J. Eur. Opt. Soc. (1)

A. Cosentino, Q. Tan, M. Roussey, and H. P. Herzig, “Refractive index sensor based on slot waveguide cavity,” J. Eur. Opt. Soc. 7, 12039 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435–437 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (2)

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Photon. Res. (1)

Prog. Quantum Electron. (1)

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Other (3)

Y. Amnon and Y. Pochi, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Blackwell, 2002).

www.nanoln.com .

H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from RIDGE waveguides to photonic crystal structures,” in European Conference on Integrated Optics (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Sketch of 2D SWG considered in the 2D-FDTD simulations. (b) Sketch of 2D slot Bragg grating structure considered in the 2D-FDTD simulations. Period of grating a and width of air groove Wair is denoted in the figure. (c) Incident E-field profile in the 2D-FDTD slot Bragg grating simulations. The LN slot, silicon rails, and air ambient medium are denoted, respectively, in the figure. (d) Normalized transmission of 2D slot Bragg grating structure with parameters of a=340  nm, Wair=200  nm, and the number of air grooves N=10.
Fig. 2.
Fig. 2. (a) Sketch of 2D slot Bragg gating structure with a defect size of Wd in the 2D-FDTD simulations. The period of grating a and the width of air groove Wair is denoted in the figure. (b) Normalized transmission of 2D slot Bragg grating structure with a symmetric F-P cavity with the parameters of a=370  nm, Wair=260  nm, Wd=290  nm, and number of air grooves on each side of defect N=5.
Fig. 3.
Fig. 3. E-field amplitude distribution of Ez component along the Bragg grating structures [the black lines show the contour of the structures with the same parameters as in Fig. 2(b)] with excitation wavelength at (a) resonance peak wavelength of 1556 nm, (b) off-resonance wavelength of 1650 nm.
Fig. 4.
Fig. 4. (a) Sketch of 3D simulated structure. (b) Zero-order normalized transmission of 3D slot Bragg grating structure with different numbers of air grooves on each side of the F-P cavity.
Fig. 5.
Fig. 5. 3D-FDTD simulated zero-order normalized transmission with structure parameters as a=380  nm, Wair=260  nm, H=500  nm, Wsi=200  nm, Ws=100  nm, number of air grooves on each side of defect N=7 and varying defect size Wd.
Fig. 6.
Fig. 6. 3D-FDTD zero-order normalized transmission of slot Bragg grating structure with parameters of a=380  nm, Wair=260  nm, Wsi=200  nm, Ws=100  nm and the number of air grooves on each side of defect N=7 and with (a) slot etching depth H=400  nm while varying Wd=340, 360 and 380 nm. (b) Slot etching depth H=700  nm while varying Wd=320, 340, 360, and 400 nm.
Fig. 7.
Fig. 7. (a) Sketch of Bragg grating with silicon height larger than LN slot height. The air grooves etching depth equal to Hsi. (b) 3D-FDTD simulated zero-order normalized transmission with structure parameters as a=380  nm, Wair=260  nm, H=500  nm, Wsi=200  nm, Ws=100  nm, number of air grooves on each side of defect N=7, Wd=380  nm, and varying the silicon height Hsi.
Fig. 8.
Fig. 8. (a) 3D FDTD normalized transmission calculated by Poynting energy flux at the output of the WG with parameters of H=700  nm, a=380  nm, Wair=260  nm, Wd=340  nm, number of air grooves N=7 and with different Δn values of the LN. (b) λres versus different Δn deduced from (a).

Tables (4)

Tables Icon

Table 1. PBG Size of 10 Air Grooves, a=340  nm while Varying the Value of Wair (Units in nm)

Tables Icon

Table 2. PBG Center Varying with a and Wair while Keeping Wair/a Around 0.7 (Units in nm)

Tables Icon

Table 3. Resonance Properties Versus the Defect Size Wd

Tables Icon

Table 4. Resonance Properties Versus the Number of Air Grooves N

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fopt¯=Cavity|E(y,z)|dydzun-structuredLN|E(y,z)|dydz.
Δn=12ne3r33ez,
Δn=12ne3r33fopt¯2ez.

Metrics