Abstract

We investigate the dynamic crystallization processes of colloidal photonic crystals, which are potentially invaluable for solving a number of existing and emerging technical problems in regards to controlled fabrication of crystals, such as size normalization, stability improvement, and acceleration of synthesis. In this paper, we report systematic high-resolution optical observation of the spontaneous crystallization of monodisperse polystyrene (PS) micro-spheres in aqueous solution into close-packed arrays in a static line optical tweezers. The experiments demonstrate that the crystal structure is mainly affected by the minimum potential energy of the system; however, the crystallization dynamics could be affected by various mechanical, physical, and geometric factors. The complicated dynamic transformation process from 1D crystallization to 2D crystallization and the creation and annihilation of dislocations and defects via crystal relaxation are clearly illustrated. Two major crystal growth modes, the epitaxy growth pattern and the inserted growth pattern, have been identified to play a key role in shaping the dynamics of the 1D and 2D crystallization process. These observations offer invaluable insights for in-depth research about colloidal crystal crystallization.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Janus Nematic Colloids driven by light

M. Conradi, M. Zorko, and I. Muševič
Opt. Express 18(2) 500-506 (2010)

Interactive light-driven and parallel manipulation of inhomogeneous particles

Peter John Rodrigo, René Lynge Eriksen, Vincent Ricardo Daria, and Jesper Glückstad
Opt. Express 10(26) 1550-1556 (2002)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  2. Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
    [Crossref]
  3. A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
    [Crossref]
  4. R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
    [Crossref]
  5. Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
    [Crossref]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  8. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
    [Crossref]
  9. A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
    [Crossref]
  10. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
    [Crossref]
  11. Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
    [Crossref]
  12. G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–2421 (2002).
    [Crossref]
  13. B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
    [Crossref]
  14. H.-J. Butt, “Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope,” Biophys. J. 60, 1438–1444 (1991).
    [Crossref]
  15. J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
    [Crossref]
  16. M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
    [Crossref]
  17. T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
    [Crossref]
  18. H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. Mech. 56, 2351–2360 (2013).
    [Crossref]
  19. L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
    [Crossref]
  20. Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
    [Crossref]
  21. J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
    [Crossref]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  23. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [Crossref]
  24. J. Liu, C. Zhang, Y. W. Zong, H. L. Guo, and Z. Y. Li, “Ray-optics method for optical force and torque on a spherical metal-coated Janus microparticle,” Photon. Res. 3, 265–274 (2015).
    [Crossref]

2016 (1)

J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
[Crossref]

2015 (2)

J. Liu, C. Zhang, Y. W. Zong, H. L. Guo, and Z. Y. Li, “Ray-optics method for optical force and torque on a spherical metal-coated Janus microparticle,” Photon. Res. 3, 265–274 (2015).
[Crossref]

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

2014 (1)

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

2013 (1)

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. Mech. 56, 2351–2360 (2013).
[Crossref]

2012 (1)

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

2009 (1)

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

2003 (1)

B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
[Crossref]

2002 (1)

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–2421 (2002).
[Crossref]

2001 (2)

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

2000 (1)

Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
[Crossref]

1999 (1)

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

1998 (3)

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
[Crossref]

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

1997 (2)

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

1996 (1)

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

1991 (1)

H.-J. Butt, “Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope,” Biophys. J. 60, 1438–1444 (1991).
[Crossref]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

Baughman, R. H.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Biswas, R.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Blanco, A.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Blanford, C. F.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
[Crossref]

Butt, H.-J.

H.-J. Butt, “Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope,” Biophys. J. 60, 1438–1444 (1991).
[Crossref]

Chaikin, P. M.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Chen, K.

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Cintas, A.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Clays, K.

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

Cui, C.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Dantas, S. O.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Ding, T.

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

Gan, L.

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

García-Santamaría, F.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Gates, B.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[Crossref]

Gröblacher, S.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Grzybowski, B.

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–2421 (2002).
[Crossref]

Guo, H.

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Guo, H. L.

J. Liu, C. Zhang, Y. W. Zong, H. L. Guo, and Z. Y. Li, “Ray-optics method for optical force and torque on a spherical metal-coated Janus microparticle,” Photon. Res. 3, 265–274 (2015).
[Crossref]

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. Mech. 56, 2351–2360 (2013).
[Crossref]

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Guo, H.-L.

J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Ho, K.-M.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Holgado, M.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Holland, B. T.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
[Crossref]

Huang, L.

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Ibisate, M.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Jede, T. A.

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Khayrullin, I.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Lenhoff, A. M.

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

Li, J. F.

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Li, M.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Li, Z. Y.

J. Liu, C. Zhang, Y. W. Zong, H. L. Guo, and Z. Y. Li, “Ray-optics method for optical force and torque on a spherical metal-coated Janus microparticle,” Photon. Res. 3, 265–274 (2015).
[Crossref]

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. Mech. 56, 2351–2360 (2013).
[Crossref]

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Li, Z.-Y.

J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
[Crossref]

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[Crossref]

Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
[Crossref]

Lin, L.

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Liu, J.

J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
[Crossref]

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

J. Liu, C. Zhang, Y. W. Zong, H. L. Guo, and Z. Y. Li, “Ray-optics method for optical force and torque on a spherical metal-coated Janus microparticle,” Photon. Res. 3, 265–274 (2015).
[Crossref]

Liu, R.

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Lobo, R. F.

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

López, C.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

lqbal, Z.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Marti, J.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Meenehan, S.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Meseguer, F.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Meyer, W.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Mifsud, A.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Míguez, H.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Molpecerces, C.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Ottewill, R. H.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Parviz, B. A.

B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
[Crossref]

Ralchenko, V. G.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Requena, J.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Rogers, R.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Russel, W. B.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Ryan, D.

B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Serna, C. J.

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Sigalas, M. M.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Song, K.

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

Stein, A.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
[Crossref]

Subramania, G.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Tarhan, Í.

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref]

Tung, C.-H.

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

Velev, O. D.

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

Watson, G. H.

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref]

Whitesides, G. M.

B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
[Crossref]

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–2421 (2002).
[Crossref]

Xia, Y.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yang, M.

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Zakhidov, A. A.

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

Zhang, C.

Zhang, Z.-Q.

Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
[Crossref]

Zhong, X. L.

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Zhu, J.

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

Zong, Y.

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Zong, Y. W.

ACS Nano (1)

Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z.-Y. Li, and K. Chen, “An optically driven bi-stable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Adv. Mater. (2)

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[Crossref]

T. Ding, K. Song, K. Clays, and C.-H. Tung, “Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field,” Adv. Mater. 21, 1936–1940 (2009).
[Crossref]

Biophys. J. (2)

H.-J. Butt, “Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope,” Biophys. J. 60, 1438–1444 (1991).
[Crossref]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

IEEE Trans. Adv. Packag. (1)

B. A. Parviz, D. Ryan, and G. M. Whitesides, “Using self-assembly for the fabrication of nano-scale electronic and photonic devices,” IEEE Trans. Adv. Packag. 26, 233–241 (2003).
[Crossref]

Langmuir (1)

M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpecerces, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophretic deposition to control artificial opal growth,” Langmuir 15, 4701–4704 (1999).
[Crossref]

Nanoscale (1)

J. Liu, H.-L. Guo, and Z.-Y. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8, 19894–19900 (2016).
[Crossref]

Nanotechnology (1)

L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[Crossref]

Nature (2)

J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shuttle Crew W. B. Russel, and P. M. Chaikin, “Crystallization of hard-sphere colloids in microgravity,” Nature 387, 883–885 (1997).
[Crossref]

O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (2)

Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
[Crossref]

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Phys. Rev. Lett. (4)

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Sci. China Phys. Astro. Mech. (1)

H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. Mech. 56, 2351–2360 (2013).
[Crossref]

Science (4)

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–2421 (2002).
[Crossref]

A. A. Zakhidov, R. H. Baughman, Z. lqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[Crossref]

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids,” Science 281, 538–540 (1998).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Other (1)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Supplementary Material (3)

NameDescription
» Visualization 1: AVI (5749 KB)      Movie 1. 3umPS-1d
» Visualization 2: AVI (3469 KB)      Movie 2. 3umPS-1d-2d-transformation
» Visualization 3: AVI (3259 KB)      Movie 3. 3umPS-2d

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental schematic diagram of the LOT setup. L1, lens 1; L2, lens 2; L3, lens 3; M1, reflection mirror 1; D1, dichroic mirror; M2, reflection mirror 2; L4, lens 4.
Fig. 2.
Fig. 2. Electric field amplitude distributions in (a1)  x o y plane, (a2)  x o z plane, and (a3)  y o z plane, respectively. (b) The trapping potential energy surface calculated for the line optical trap in x o y plane. The optical trapping efficiencies (c1)  Q x S x , (c2)  Q y S y , and (c3)  Q z S z on a PS particle imposed by the LOT.
Fig. 3.
Fig. 3. 1D crystallization of 3 μm diameter PS spheres in an LOT. (a) Epitaxial growth pattern. (b) Inserted growth pattern. The recorded microscopy snapshot images clearly show the dynamic process of crystallization of PS beads, where the red circle with red arrow indicates the new arriving PS bead. In the epitaxial growth pattern, the new arriving PS bead would allocate at the two ends of the existing 1D crystal line, while, in the inserted growth pattern, the new arriving PS bead would insert into and finally allocate somewhere inside the existing 1D crystal line. The schematic illustration of each growth pattern in 1D crystallization process is included at the top of each figure.
Fig. 4.
Fig. 4. Series of snapshots of microscopically recorded images illustrating the dynamic process of transformation from 1D crystallization to 2D crystallization. The schematic illustration of transformation is included at the top of the figure. Red circle emphasizes an additional particle entering the optical field. Green circle denotes the minimal energy position. The particles with residual momentum are marked with the blue rectangle. Black rectangle indicates the crystalline region undergoing a drastic structural change and transition.
Fig. 5.
Fig. 5. Two series of snapshots showing two growth patterns of a PS colloidal crystal in 2D crystallization process. (a) Epitaxial growth pattern. (b) Inserted growth pattern. Red rectangle indicates the ever-changing crystalline region. Red circle emphasizes an additional particle entering the optical field. In the epitaxial growth pattern, the new arriving PS beads would allocate at the two ends of the existing 2D crystal, while in the inserted growth pattern, those beads would insert into and finally allocate somewhere inside the existing 2D crystal. The schematic illustration of each growth pattern in 2D crystallization process is included at the top of each figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = E 0 ω 0 x ω 0 y ω x ( z ) ω y ( z ) exp { i [ k z η ( z ) ] i k x 2 2 q x ( z ) i k y 2 2 q y ( z ) } = E 0 ω 0 x ω 0 y ω x ( z ) ω y ( z ) exp { i [ k z η ( z ) ] x 2 [ 1 ω x 2 ( z ) + i k 2 R x ( z ) ] y 2 [ 1 ω y 2 ( z ) + i k 2 R y ( z ) ] } ,
φ ( z ) = F ( x , y , z ) d x d y = ( P n / c ) Q ( x , y , z ) d x d y ,

Metrics