Abstract

Stimulated emission depletion (STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of a specimen’s optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the severe distortion of the depletion beam profile may cause complete loss of the super-resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is difficult to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique. The full correction can effectively maintain and improve spatial resolution in imaging thick samples.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics

Brian R. Patton, Daniel Burke, David Owald, Travis J. Gould, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 24(8) 8862-8876 (2016)

Adaptive optics enables 3D STED microscopy in aberrating specimens

Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 20(19) 20998-21009 (2012)

Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging

Egidijus Auksorius, Bosanta R. Boruah, Christopher Dunsby, Peter M. P. Lanigan, Gordon Kennedy, Mark A. A. Neil, and Paul M. W. French
Opt. Lett. 33(2) 113-115 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission: stimulated emission depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  2. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
    [Crossref]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  4. M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  5. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  6. G. Moneron and S. W. Hell, “Two-photon excitaion STED microscopy,” Opt. Express 17, 14567–14573 (2009).
    [Crossref]
  7. N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
    [Crossref]
  8. W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
    [Crossref]
  9. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
    [Crossref]
  10. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
    [Crossref]
  11. M. J. Booth, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251–261 (2015).
    [Crossref]
  12. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive enables 3D STED microscopy in aberrating specimens,” Opt. Express 20, 20998–21009 (2012).
    [Crossref]
  13. M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
    [Crossref]
  14. I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
    [Crossref]
  15. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18, 1657–1666 (2010).
    [Crossref]
  16. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Investigation of the influence of the aberration induced by a plane interface on STED microscopy,” Opt. Express 17, 1714–1725 (2009).
    [Crossref]
  17. R. Liu, D. E. Milkie, A. Kerlin, B. M. Lennan, and N. Ji, “Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique,” Opt. Express 22, 1619–1628 (2014).
    [Crossref]
  18. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36, 870–872 (2011).
    [Crossref]
  19. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. Omeara, J. A. Sanguinet, and W. P. Brown, “Coherent optical adaptive technique,” Appl. Opt. 13, 291–300 (1974).
    [Crossref]
  20. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009).
    [Crossref]
  21. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
    [Crossref]
  22. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011).
    [Crossref]
  23. M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
    [Crossref]

2016 (2)

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

2015 (2)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

M. J. Booth, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251–261 (2015).
[Crossref]

2014 (3)

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

R. Liu, D. E. Milkie, A. Kerlin, B. M. Lennan, and N. Ji, “Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique,” Opt. Express 22, 1619–1628 (2014).
[Crossref]

2012 (1)

2011 (3)

2010 (2)

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18, 1657–1666 (2010).
[Crossref]

2009 (3)

2007 (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
[Crossref]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

1999 (1)

1994 (1)

1974 (1)

Amora, M. D.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Azucena, O.

Bates, M.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
[Crossref]

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

Bianchini, P.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Booth, M. J.

M. J. Booth, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251–261 (2015).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive enables 3D STED microscopy in aberrating specimens,” Opt. Express 20, 20998–21009 (2012).
[Crossref]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

Bridges, W. B.

Brown, A. C.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Brown, W. P.

Brunner, P. T.

Burke, D.

Castello, M.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Chen, D. C.

Cheng, Y.

Clegg, J. H.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Cui, M.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Davis, D. M.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Deng, S.

Diaspro, A.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Dong, D.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Dunsby, C.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Fernandez, B.

French, P. M.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Fu, M.

Garcia, D.

Gong, Q.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Gould, T. J.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

Hell, S. W.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
[Crossref]

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

G. Moneron and S. W. Hell, “Two-photon excitaion STED microscopy,” Opt. Express 17, 14567–14573 (2009).
[Crossref]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission: stimulated emission depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

Hernandez, I. C.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

R. Liu, D. E. Milkie, A. Kerlin, B. M. Lennan, and N. Ji, “Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique,” Opt. Express 22, 1619–1628 (2014).
[Crossref]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009).
[Crossref]

Ji, Z.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Kamin, D.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Keller, J.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Kerlin, A.

Klar, T. A.

Kubby, J.

Lanzano, L.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Lauterbach, M. A.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Lazzara, S. P.

Lennan, B. M.

Lenz, M. O.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Li, R.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Liu, L.

Liu, R.

Milkie, D. E.

R. Liu, D. E. Milkie, A. Kerlin, B. M. Lennan, and N. Ji, “Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique,” Opt. Express 22, 1619–1628 (2014).
[Crossref]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009).
[Crossref]

Moneron, G.

Nagerl, U. V.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
[Crossref]

Neil, M. A.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Nussmeier, T. A.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Omeara, T. R.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

Rizzoil, S. O.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Rust, M.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
[Crossref]

Sanguinet, J. A.

Savell, A.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Schonle, A.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Schwartz, J. L.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Shi, K.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Sinclair, H. G.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

Tao, X.

Urban, N. T.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
[Crossref]

Vicidomini, G.

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

Westphal, V.

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Wichmann, J.

Willig, K. I.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
[Crossref]

Xi, P.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Xiao, Y.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Xu, Z.

Yang, X.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Yu, W.

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Zhuang, X.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
[Crossref]

Zuo, Y.

Appl. Opt. (1)

Biophys. J. (1)

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nagerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101, 1277–1284 (2011).
[Crossref]

J. Biophoton. (2)

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophoton. 7, 29–36 (2014).
[Crossref]

M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, and S. W. Hell, “Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons,” J. Biophoton. 3, 417–424 (2010).
[Crossref]

Laser. Photon. Rev. (1)

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser. Photon. Rev. 10, 147–152 (2016).
[Crossref]

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

Microscopy (1)

M. J. Booth, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251–261 (2015).
[Crossref]

Nat. Commun. (1)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues,” Nat. Commun. 6, 7276 (2015).
[Crossref]

Nat. Methods (2)

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006).
[Crossref]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Philos. Trans. R. Soc. A (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Sci. Rep. (1)

I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, and G. Vicidomini, “Two-photon excitation STED microscopy with time-gated detection,” Sci. Rep. 6, 19419 (2016).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the COAT-STED microscope. L, lens; GLP, Glan laser polarizer; M, mirrors; DM1 (T: 720–1200 nm, R: 350–720 nm), DM2 (T: 650–800 nm, R: 600–650 nm): dichroic mirrors; GR, glass rod; λ/2, half-wave plate; λ/4, quarter-wave plate; Det, PMT or CCD; SM fiber, single mode fiber; PM fiber, polarization maintaining fiber; MM fiber, multimode fiber.
Fig. 2.
Fig. 2. (a)–(d) Steps of the COAT phase measurement for directly achieving wavefront correction phase patterns. (e) PSF measured by imaging a GNP mounted on a slide when passing the unmodulated beam though the depletion beam path. (f) PSF of depletion beam after correction. (g) Intensity profiles of the depletion beam before and after correction.
Fig. 3.
Fig. 3. SLM was configured to provide different phase control segments for aberration correction. (a) Achieved PSFs of no correction and corrected depletion beam with three kinds of phase control segments (correction 1: 1×9 squares, correction 2: 4×9 squares, and correction 3: 9×9 squares). (b) Intensity profiles of the PSFs for no correction, correction 1, correction 2, and correction 3. (c), (d), and (e) Correction phase patterns used for correction 1, 2, and 3, respectively.
Fig. 4.
Fig. 4. Phantom sample. Middle green region is 5% agarose. Yellow balls are 150 nm GNPs. Red balls are 170 nm FMSs.
Fig. 5.
Fig. 5. Correction aberration with COAT (9×9 segments) for the depletion beam path. (a) PSFs of depletion beam with no correction, the system correction, and the full correction. (b) PSF intensity profiles. (c) Phase mask for the system correction. (d) Phase mask for the full correction.
Fig. 6.
Fig. 6. Profiles of STED beam PSFs with no correction, system correction, and full correction. Upper: profiles of XY section; bottom: profiles of XZ section.
Fig. 7.
Fig. 7. Imaging GNPs overlay beams of no correction and full correction with excitation beam. (a) Overlay beam of no correction. (b) Overlay beam of full correction. (c) PSFs intensity curves of no correction depletion beam, correction depletion beam, and excitation beam.
Fig. 8.
Fig. 8. (a) Confocal, STED 1 (no correction), STED 2 (system correction), and STED 3 (full correction) images of a single FMS. (b) Normalized intensity profiles of the images.
Fig. 9.
Fig. 9. Images of rat heart tissue sample at different depths (7, 19, and 36 μm): The first line are (a) confocal, (b) STED with no correction, and (c) STED with system correction (aberration-corrected STED: AC STED) at 7 μm depth; the second line (d)–(f) are imaging at 19 μm depth; the third line (g)–(i) are imaging at 36 μm depth. The enlarged blue boxed areas are shown in the inset. (j)–(l) Intensity profiles along the blue lines. (m) Final correction phase applied to the SLM.

Metrics