Abstract

We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved via nonlinear thermo-optical tuning when the cavity-coupled optical pump is partially absorbed by the material. The locally generated heat then produces a thermal field, which influences the spatially overlapping optical modes, allowing us to alter the relative spectral separation of resonances. Furthermore, we exploit such tunability to continuously probe the coupling between different families of quasi-degenerate modes that exhibit asymmetric Fano interactions. As a particular case, we demonstrate a complete disappearance of one of the modal features in the transmission spectrum as predicted by Fano [Phys. Rev. 124, 1866 (1961) [CrossRef]  ]. The phenomenon is modeled as a third-order nonlinearity with a spatial distribution that depends on the stored optical field and thermal diffusion within the resonator. The performed nonlinear numerical simulations are in excellent agreement with the experimental results, which confirm the validity of the developed theory.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure

Yundong Zhang, Xuenan Zhang, Ying Wang, Ruidong Zhu, Yulong Gai, Xiaoqi Liu, and Ping Yuan
Opt. Express 21(7) 8570-8586 (2013)

Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities

Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 21(10) 11877-11888 (2013)

Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator

Kun Zhang, Yue Wang, and Yi-Hui Wu
Opt. Lett. 42(15) 2956-2959 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  3. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
    [Crossref]
  4. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  5. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  6. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
    [Crossref]
  7. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
    [Crossref]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  9. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref]
  10. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [Crossref]
  11. Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
    [Crossref]
  12. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
    [Crossref]
  13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [Crossref]
  14. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  15. C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
    [Crossref]
  16. B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
    [Crossref]
  17. Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22, 3219–3227 (2014).
    [Crossref]
  18. M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
    [Crossref]
  19. G. Griffel, “Vernier effect in asymmetrical ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 1642–1644 (2000).
    [Crossref]
  20. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  21. T. Baak, “Thermal coefficient of refractive index of optical glasses,” J. Opt. Soc. Am. 59, 851–857 (1969).
    [Crossref]
  22. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
    [Crossref]
  23. M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
    [Crossref]
  24. M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
    [Crossref]

2014 (2)

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22, 3219–3227 (2014).
[Crossref]

2013 (2)

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

2011 (6)

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
[Crossref]

2010 (3)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[Crossref]

2009 (1)

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

2000 (1)

G. Griffel, “Vernier effect in asymmetrical ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 1642–1644 (2000).
[Crossref]

1969 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Asghari, M.

Baak, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Bernard, M.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Carusotto, I.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Chen, J.

Chen, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Cui, J.

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Dong, C.

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Feng, D.

Feng, N.-N.

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Foster, M. A.

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Gaeta, A. L.

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Ghulinyan, M.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

Gong, Q.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Griffel, G.

G. Griffel, “Vernier effect in asymmetrical ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 1642–1644 (2000).
[Crossref]

Guider, R.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

Guo, G.

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Han, Z.

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Hou, T.

Huang, Q.

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Ilchenko, V. S.

Jiang, X.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Krishnamoorthy, A. V.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kuzucu, O.

Levy, J. S.

Li, B.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Li, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Liang, H.

Lipson, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
[Crossref]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Liu, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Luo, L.-W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Maleki, L.

Manzano, F. R.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

Matsko, A. B.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Pavesi, L.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

Pitanti, A.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Prtljaga, N.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Pucker, G.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

Qian, W.

Ramiro-Manzano, F.

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38, 3562–3565 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Saha, K.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Savchenkov, A. A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Shafiiha, R.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sherwood-Droz, N.

Shu, Z.

Song, G.

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[Crossref]

Xia, J.

Xiao, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Yu, J.

Zheng, X.

Zou, C.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Appl. Phys. Lett. (1)

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

G. Griffel, “Vernier effect in asymmetrical ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 1642–1644 (2000).
[Crossref]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23, 1166–1168 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, and G. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Photonics (2)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Phys. Rev. A (1)

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90, 053811 (2014).
[Crossref]

Phys. Rev. Lett. (3)

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Other (1)

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (803 KB)      Dynamic evolution of the experimental probe resonance transmission as a function of the pump wavelength in the case $ \omega_1^s < \omega_2^s $ demonstrates the vanishing peak feature. (Fig. 6)
» Visualization 2: MP4 (1113 KB)      Dynamic evolution of the experimental probe resonance transmission as a function of the pump wavelength in the case $\omega_1^s > \omega_2^s$ demonstrates complete crossing of resonances. (Fig. 7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic representation of the mode-crossing possibilities. (a) Azimuthal modes of two radial families progressively shift at each increment of the azimuthal number due to the difference in FSR, possibly going through a crossing. (b) Continuous tuning of a doublet of resonances may be obtained via nonlinearities, such as a localized thermo-optic effect.

Fig. 2.
Fig. 2.

Simulated thermal distribution generated by (a) the first and (b) the second optical radial family modes. The contour lines show the modes’ electric field profiles.

Fig. 3.
Fig. 3.

Resonant line shape modification under a sweeping pump in the presence of optical nonlinearity. The cold cavity spectrum (dashed line) is obtained with a weak probe. When sweeping the spectrum using a high-power laser (solid line), the resonance shifts progressively due to the increasing nonlinear effect, resulting in a spectrum with an apparent discontinuity, where the cavity mode de-locks from the pump laser.

Fig. 4.
Fig. 4.

Experimental setup. A tunable laser amplified with an EDFA is mixed with the broadband signal of a BOA and shone into the sample with a taper fiber. The output also is collected with a taper fiber, split, and fed to an OSA and a broadband germanium detector.

Fig. 5.
Fig. 5.

Experimental cold cavity spectrum of the resonator. Three azimuthal modes are present for the families R1, R2, and R3. The relative position of the R1R2 doublet peaks transforms across the spectrum due to the difference in the respective FSRs.

Fig. 6.
Fig. 6.

Results of the pump and probe experiment. Panel (a) shows the cold (dashed) and hot (solid) cavity transmission spectra of the device around the strongly pumped resonance doublet. The thermo-optic nonlinearity, induced by the pumped doublet, also affects the other resonances (b), allowing for a relative detuning of the peaks as shown by the transmission color map. (c) Selected transmission spectra show the transformation of the Fano resonance in the vicinity of the critical phase point, where a complete disappearance of the R1s peak feature takes place (panel C). The probe spectrum time-evolution, together with the pump dynamic transmission is represented in Visualization 1.

Fig. 7.
Fig. 7.

Pump and probe experiments demonstrating a complete crossing of the modes. Panels (a), (b), and (c) represent the same experiment under different input power conditions of 0.5, 1, and 2 W, respectively. (d) The selected spectra, under 2 W pump, demonstrate three cases of the relative detuning, which changes from positive (A) to negative (C) passing through the δω012=0 condition (B). The probe spectrum time evolution, together with the pump dynamic transmission with input power 2.0 W is represented in Visualization 2.

Fig. 8.
Fig. 8.

Experimental and simulated data of the pump and probe experiment. (a) Experimental pump transmission spectrum of the loaded cavity (black line) is simulated (dashed red) by inserting the cold cavity fit parameters into Eq. (15). (b) Experimental transmission map as a function of both pump and probe wavelength is shown. (c) Relative coupling η1 among the two radial family modes to the waveguide, extracted from results in panel (b). Successively, η1 is used to compute the Γ and Δ matrices of Eq. (10) to also take into account the changes in the coupling induced by the thermally induced δn(r). Panel (d) shows the transmission map as a function of both pump and probe wavelength using the simulated in (a) pump excitation for Eq. (16).

Tables (1)

Tables Icon

Table 1. Fit Parameters of the Cold Cavity Spectra of Both Pump and Probe Resonances, Used in the Simulationsa

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ωM=2πcMneff(z,R,M)L,
FSR(ωM)=2πcngML,
|Δω|max(HWHM1,HWHM2).
ωM+l1ωM1+l·FSR1,
ωN+l2ωN2+l·FSR2,
δωl12=ωM+l1ωN+l2δω012+l·ΔFSR12,
ωM2πcMLneff(1dneffdTΔTneff)=ωM0+δω.
δn(r)χ(r,r)|αpEp(r)|2dr|αp|2χ(r,r)|Ep(r)|2dr.
δω|Es(r)|2δn(r)dr.
δω=|αp|2|Es(r)|2χ(r,r)|Ep(r)|2drdr=|αp|2g.
Li(t)idαidt=[ωio+Δiiiγinr+Γiirad2]αi+f¯iEinc(t),
idαidt=Li(t)+|αi|2gαi.
idαidt=Li(t)+j|αj|2gjiαi.
idαjdt=Lj(t)+|αM|2gMjαj.
Fjp(t)=idαjpdt=Ljp(t)+(Δ12iΓ12rad2)α3jp,
idαjpdt=Fjp(t)+(gjj|αjp|2+g12|α3jp|2)αjp,
idαjsdt=Fjs(t)+(gjj|αjp|2+g12|α3jp|2)αjs.

Metrics