Abstract

We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift. The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm- and Ho-doped fiber lasers.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range

Grzegorz Soboń, Tadeusz Martynkien, Dorota Tomaszewska, Karol Tarnowski, Paweł Mergo, and Jarosław Sotor
Photon. Res. 6(5) 368-372 (2018)

1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser

Fangzhou Tan, Hongxing Shi, Ruoyu Sun, Peng Wang, and Pu Wang
Opt. Express 24(20) 22461-22468 (2016)

260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 23(24) 31446-31451 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 642–649 (2014).
    [Crossref]
  2. M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
    [Crossref]
  3. A. Khodabakhsh, V. Ramaiah-Badarla, L. Rutkowski, A. C. Johansson, K. F. Lee, J. Jiang, C. Mohr, M. E. Fermann, and A. Foltynowicz, “Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4  μm,” Opt. Lett. 41, 2541–2544 (2016).
    [Crossref]
  4. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref]
  5. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).
  6. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
    [Crossref]
  7. P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100  fs passively mode-locked holmium-doped fiber oscillator operating at 2.06  μm,” Opt. Lett. 39, 6859–6862 (2014).
    [Crossref]
  8. Y. Tang, A. Chong, and F. W. Wise, “Generation of 8  nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40, 2361–2364 (2015).
    [Crossref]
  9. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16, 20471–20476 (2008).
    [Crossref]
  10. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
    [Crossref]
  11. J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
    [Crossref]
  12. J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
    [Crossref]
  13. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3  nJ,” Opt. Lett. 33, 690–692 (2008).
    [Crossref]
  14. G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24, 6156–6161 (2016).
    [Crossref]
  15. J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [Crossref]
  16. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100  fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
    [Crossref]
  17. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36, 540–542 (2011).
    [Crossref]
  18. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
    [Crossref]
  19. M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40, 4094–4097 (2015).
    [Crossref]
  20. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6–2.5  μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20, 27102–27107 (2012).
    [Crossref]
  21. J. Sotor and G. Sobon, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
    [Crossref]
  22. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
    [Crossref]
  23. J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  24. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
    [Crossref]
  25. T. Cheng, R. Usaki, Z. Duan, W. Gao, D. Deng, M. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber,” Opt. Express 22, 3740–3746 (2014).
    [Crossref]

2016 (7)

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

J. Sotor and G. Sobon, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24, 6156–6161 (2016).
[Crossref]

A. Khodabakhsh, V. Ramaiah-Badarla, L. Rutkowski, A. C. Johansson, K. F. Lee, J. Jiang, C. Mohr, M. E. Fermann, and A. Foltynowicz, “Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4  μm,” Opt. Lett. 41, 2541–2544 (2016).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100  fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

2015 (3)

2014 (3)

2012 (3)

2011 (1)

2008 (3)

2005 (2)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[Crossref]

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

Abramski, K.

Abramski, K. M.

Anashkina, E. A.

Andrianov, A. V.

Bache, M.

Bang, O.

Brida, D.

Buczynski, R.

Byer, R. L.

Cajzl, J.

Charan, K.

Cheng, T.

Chong, A.

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[Crossref]

Deng, D.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 642–649 (2014).
[Crossref]

Dorofeev, V. V.

Duan, Z.

Dudley, J. M.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[Crossref]

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Engelbrecht, M.

Fehrenbacher, D.

Fermann, M.

Fermann, M. E.

Foltynowicz, A.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Frosz, M. H.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Gao, W.

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

Grosse-Wortmann, U.

Hartl, I.

Hasan, T.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Haxsen, F.

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

Honzátko, P.

Hu, G.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Huber, R.

Jiang, J.

Johansson, A. C.

Kaczmarek, P.

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

Kanou, Y.

Kašík, I.

Khodabakhsh, A.

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[Crossref]

Kim, A. V.

Klimczak, M.

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Koptev, M. Y.

Kosolapov, A. F.

Kracht, D.

Krajewska, A.

Krauss, G.

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Lee, K. F.

Leindecker, N.

Leitenstorfer, A.

Li, P.

Liang, X.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Liao, M.

Lin, S.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Liu, C.

J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Marandi, A.

Martynkien, T.

Mashinsky, V. M.

Matsumoto, M.

Misumi, T.

Mohr, C.

Morgner, U.

Muravyev, S. V.

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

Ohishi, Y.

Ouyang, D.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Pasternak, I.

Pawliszewska, M.

Peterka, P.

Przewolka, A.

Pysz, D.

Ramaiah-Badarla, V.

Riek, C.

Ruan, S.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 642–649 (2014).
[Crossref]

Ruehl, A.

Rutkowski, L.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Schunemann, P. G.

Sell, A.

Siwicki, B.

Sobon, G.

Sotor, J.

Strupinski, W.

Sun, Z.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Suzuki, T.

Tang, Y.

Travers, J. C.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Usaki, R.

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Vodopyanov, K. L.

Wandt, D.

Wang, J.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Wang, T.

Wise, F. W.

Wright, L. G.

Wu, X.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Xu, C.

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100  fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
[Crossref]

J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Yan, P.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Zheng, Z.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Zhou, B.

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

J. H. Lee, J. van Howe, C. Xu, and C. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

J. Eur. Opt. Soc. (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

Laser Phys. Lett. (1)

J. Sotor and G. Sobon, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

Opt. Express (7)

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6–2.5  μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20, 27102–27107 (2012).
[Crossref]

T. Cheng, R. Usaki, Z. Duan, W. Gao, D. Deng, M. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber,” Opt. Express 22, 3740–3746 (2014).
[Crossref]

G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24, 6156–6161 (2016).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16, 20471–20476 (2008).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
[Crossref]

Opt. Fiber Technol. (1)

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 642–649 (2014).
[Crossref]

Opt. Lett. (7)

M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3  nJ,” Opt. Lett. 33, 690–692 (2008).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100  fs passively mode-locked holmium-doped fiber oscillator operating at 2.06  μm,” Opt. Lett. 39, 6859–6862 (2014).
[Crossref]

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8  nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40, 2361–2364 (2015).
[Crossref]

G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36, 540–542 (2011).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

A. Khodabakhsh, V. Ramaiah-Badarla, L. Rutkowski, A. C. Johansson, K. F. Lee, J. Jiang, C. Mohr, M. E. Fermann, and A. Foltynowicz, “Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4  μm,” Opt. Lett. 41, 2541–2544 (2016).
[Crossref]

M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40, 4094–4097 (2015).
[Crossref]

Optica (1)

Sci. Rep. (1)

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152  fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 28885 (2016).
[Crossref]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of the all-fiber frequency-shifted laser. EDF: Erbium-doped fiber; GSA: graphene saturable absorber; WDM: wavelength division multiplexer; OC/ISO/WDM—output coupler/isolator/WDM hybrid component.
Fig. 2.
Fig. 2. SEM images of the fabricated HNLF.
Fig. 3.
Fig. 3. Measured dispersion characteristics of the HNLF and DCF fibers (dotted lines). Blue solid line represents the HNLF dispersion curve calculated based on the actual geometry of the fiber. Red solid line is the polynomial fitting of the measured DCF-2000 dispersion curve.
Fig. 4.
Fig. 4. Measured (blue line) and calculated (red dots) optical spectra at the DCF output for different pumping powers. Spectra between 1800–1920 nm are affected by water absorption lines.
Fig. 5.
Fig. 5. Average output power of the frequency-shifted soliton (filtered from the entire spectrum) at different central wavelengths.
Fig. 6.
Fig. 6. Measured pulse autocorrelations of the frequency-shifted solitons at different central wavelengths from 1700 to 2100 nm.
Fig. 7.
Fig. 7. Comparison between the (a) optical spectrum and (b) pulse duration of the soliton centered at 2050 nm before and after the DCF-2000 fiber.

Tables (1)

Tables Icon

Table 1. Summary of the Obtained Results

Metrics