Abstract

Visible light communication (VLC) is a promising solution to the increasing demands for wireless connectivity. Gallium nitride micro-sized light emitting diodes (micro-LEDs) are strong candidates for VLC due to their high bandwidths. Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz. An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated, and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED, when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system. A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication

J. F. C. Carreira, E. Xie, R. Bian, C. Chen, J. J. D. McKendry, B. Guilhabert, H. Haas, E. Gu, and M. D. Dawson
Opt. Express 27(20) A1517-A1528 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, “The zettabyte era: trends and analysis,” Cisco White Paper, 2015, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf .
  2. Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.
  3. J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.
  4. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
    [Crossref]
  5. P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
    [Crossref]
  6. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
    [Crossref]
  7. R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
    [Crossref]
  8. C. J. Humphreys, “Solid-state lighting,” MRS Bull. 33(4), 459–470 (2008).
    [Crossref]
  9. A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
    [Crossref]
  10. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
    [Crossref]
  11. Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24, 20049–20058 (2016).
    [Crossref]
  12. Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
    [Crossref]
  13. D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
    [Crossref]
  14. J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.
  15. M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun. 14, 29–40 (2016).
  16. D. Tsonev, S. Sinanovic, and H. Haas, “Complete modelling of nonlinear distortion in OFDM-based optical wireless communication,” J. Lightwave Technol. 31, 3064–3076 (2013).
    [Crossref]
  17. D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
    [Crossref]
  18. P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun. 48, 430–441 (2000).
    [Crossref]
  19. S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” J. Lightwave Technol. 31, 918–929 (2013).
    [Crossref]
  20. H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference (IEEE, 2001), pp. 369–374.
  21. F. Xiong, Digital Modulation Techniques, 2nd ed. (Artech House, 2006).
  22. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
    [Crossref]
  23. L. Peng, S. Haese, and M. Hèlard, “Optimized discrete multitone communication over polymer optical fiber,” J. Opt. Commun. Netw. 5, 1313–1327 (2013).
    [Crossref]
  24. J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
    [Crossref]
  25. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [Crossref]
  26. J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

2016 (3)

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24, 20049–20058 (2016).
[Crossref]

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun. 14, 29–40 (2016).

2015 (2)

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
[Crossref]

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

2014 (1)

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

2013 (4)

2012 (1)

D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
[Crossref]

2011 (1)

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

2010 (2)

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

2008 (1)

C. J. Humphreys, “Solid-state lighting,” MRS Bull. 33(4), 459–470 (2008).
[Crossref]

2007 (1)

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

2000 (1)

P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun. 48, 430–441 (2000).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

Akhter, M.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Banelli, P.

P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun. 48, 430–441 (2000).
[Crossref]

Barros, D. J. F.

D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

Cacopardi, S.

P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun. 48, 430–441 (2000).
[Crossref]

Chi, N.

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

Chun, H.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Claussen, H.

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

Coltrin, M. E.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Corbett, B.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Crawford, M. H.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Cui, Z.

Dai, Q.

Dawson, M.

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Dawson, M. D.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Dimitrov, S.

Fakidis, J.

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

Faulkner, G.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Ferreira, R.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Fischer, A. J.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Gong, Z.

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Green, R. P.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Griffiths, A.

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Gu, E.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Haas, H.

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun. 14, 29–40 (2016).

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
[Crossref]

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” J. Lightwave Technol. 31, 918–929 (2013).
[Crossref]

D. Tsonev, S. Sinanovic, and H. Haas, “Complete modelling of nonlinear distortion in OFDM-based optical wireless communication,” J. Lightwave Technol. 31, 3064–3076 (2013).
[Crossref]

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Haese, S.

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Hanzo, L.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Hao, L.

Hèlard, M.

Henry, W.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Herrnsdorf, J.

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Humphreys, C. J.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

C. J. Humphreys, “Solid-state lighting,” MRS Bull. 33(4), 459–470 (2008).
[Crossref]

Huo, Y.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Ijaz, M.

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

Islim, M. S.

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun. 14, 29–40 (2016).

Jiang, J.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Jin, F.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Kahn, J. M.

D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

Kappers, M. J.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Kelly, A.

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Kelly, A. E.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Kelm, P.

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

Krames, M. R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Kucera, S.

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

Lam, H.

Levin, H. E.

H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference (IEEE, 2001), pp. 369–374.

Lin, Y.

Maaskant, P. P.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Massoubre, D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

McKendry, J.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

McKendry, J. J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Mueller, G. O.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Mueller-Mach, R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

O’Brien, D.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Ohno, Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Peng, L.

Penty, R.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

Phillips, J. M.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Rajbhandari, S.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Rohwer, L. E. S.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Shams, H.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Shan, Q.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

Shi, J.

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

Shur, M. S.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
[Crossref]

Simmons, J. A.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Sinanovic, S.

Strain, M. J.

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Tsao, J. Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

Tsonev, D.

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

D. Tsonev, S. Sinanovic, and H. Haas, “Complete modelling of nonlinear distortion in OFDM-based optical wireless communication,” J. Lightwave Technol. 31, 3064–3076 (2013).
[Crossref]

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Vaicekauskas, R.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
[Crossref]

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

Wang, Z.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Watson, I. M.

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Watson, S.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

White, I.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

Wilson, S. K.

D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
[Crossref]

Xie, E.

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

Xiong, F.

F. Xiong, Digital Modulation Techniques, 2nd ed. (Artech House, 2006).

Xu, Z.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Zhang, M.

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

Zhang, P.

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

Zhang, Y. F.

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

Zhao, J.

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

Zhou, Y.

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

Zhu, D.

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Zukauskas, A.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
[Crossref]

Appl. Phys. A (1)

Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles,” Appl. Phys. A 103, 389–393 (2011).
[Crossref]

Appl. Phys. Express (1)

P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013).
[Crossref]

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

IEEE Access (1)

J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video streaming in the multiuser indoor visible light downlink,” IEEE Access 3, 2959–2986 (2015).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Commun. 33, 1758–1770 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

R. Ferreira, E. Xie, J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. Penty, I. White, D. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications,” IEEE Photon. Technol. Lett. 28, 2023–2026 (2016).
[Crossref]

IEEE Trans. Commun. (2)

D. J. F. Barros, S. K. Wilson, and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links,” IEEE Trans. Commun. 60, 153–163 (2012).
[Crossref]

P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun. 48, 430–441 (2000).
[Crossref]

J. Appl. Phys. D (1)

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Appl. Phys. D 43, 354006 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Laser Photon. Rev. (1)

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1, 307–333 (2007).
[Crossref]

MRS Bull. (1)

C. J. Humphreys, “Solid-state lighting,” MRS Bull. 33(4), 459–470 (2008).
[Crossref]

Opt. Express (1)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

ZTE Commun. (1)

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun. 14, 29–40 (2016).

Other (7)

J. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. Griffiths, S. Watson, E. Gu, A. Kelly, H. Haas, and M. Dawson, “Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs,” in IEEE Summer Topicals Meeting Series (SUM) (IEEE, 2015), paper TuD4.3.

H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference (IEEE, 2001), pp. 369–374.

F. Xiong, Digital Modulation Techniques, 2nd ed. (Artech House, 2006).

Cisco Visual Networking Index, “The zettabyte era: trends and analysis,” Cisco White Paper, 2015, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf .

Y. Zhou, J. Zhao, M. Zhang, J. Shi, and N. Chi, “2.32 Gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer,” in 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (IEEE, 2016), pp. 1–4.

J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson, “Gallium nitride structured illumination light sources,” in Light, Energy and the Environment Conference (Optical Society of America, 2016), paper SSM2C.1.

J. Fakidis, M. Ijaz, S. Kucera, H. Claussen, and H. Haas, “On the design of an optical wireless link for small cell backhaul communication and energy harvesting,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, 2014), pp. 58–62.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Plan view micrographs of the segmented micro-LED arrays. The magnified micrographs on the right show the array configuration and individual pixel design. A diagram is also included noting the inner and outer pixels (dimensions in micrometers).
Fig. 2.
Fig. 2. Combined current–voltage (I–V), left, and luminescence–current (L–I), right, characteristics of both inner and outer pixels. The inset shows the emission spectrum of an inner pixel at 50 mA.
Fig. 3.
Fig. 3. Small signal frequency response for the inner pixel at 5 and 50 mA. The inset shows 6 dB E-O bandwidth at different values for the current density J, corresponding to DC-bias values of 5–50 mA.
Fig. 4.
Fig. 4. Block diagram for OFDM transmitter and receiver.
Fig. 5.
Fig. 5. (a) Bit loading and channel capacity per subcarrier, both given in bits per subcarrier. (b) Energy loading per subcarrier.
Fig. 6.
Fig. 6. Statistical CDF for different QAM constellation sizes realized at BER=2.3×103, below the FEC target.
Fig. 7.
Fig. 7. Experimental setup. (a) Schematic setup of the experiment showing the optical system, AWG, oscilloscope, amplifier, attenuator, and Bias-tee. (b) Photograph of the optical system showing the micro-LED, the optical lens system, and the photoreceiver.
Fig. 8.
Fig. 8. Experimentally obtained results and theoretical bounds of data rate and BER versus different dimming levels at a modulation depth of VPP=2.36  V. The values for the received optical power correspond to DC-bias values ranging from 10 to 40 mA.
Fig. 9.
Fig. 9. Theoretical bounds on the data rate versus BER for different dimming levels at a modulation depth of VPP=2.36  V. The values for the received optical power correspond to DC-bias values ranging from 10 to 40 mA. Filled markers denote experimental results.
Fig. 10.
Fig. 10. SNR versus frequency for different modulation depths at DC-bias current IDC=30  mA. The values for the modulation signal swings correspond to feeding the micro-LED with varying power levels from 5.85 to 11.78 dBm.
Fig. 11.
Fig. 11. Data rates versus BER for the experimentally obtained and the theoretical bounds at DC-bias current IDC=30  mA corresponding to Popt=2.6  dBm and modulation depth VPP=3.88  V.
Fig. 12.
Fig. 12. Distance versus received optical power (left) and data rate (right). (a) Study I with transmitter and receiver lenses and Study II with transmitter lens only. (b) Study III with receiver lens only and Study IV without any optics.
Fig. 13.
Fig. 13. Received optical power distribution in dBm as a function of vertical–horizontal displacements. (a) Study I at a distance of 369 cm; (b) Study I at a distance of 525 cm; (c) Study II at a distance of 104 cm; (d) Study II at a distance of 147 cm; (e) Study III at a distance of 4.7 cm; (f) Study III at a distance of 6.6 cm; (g) Study IV at a distance of 1.3 cm; (h) Study IV at a distance of 1.9 cm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

y(t)=h(t)*z(x(t))+n(t),
z(x(t))=αx(t)+d(t),
α=E[z(x(t))·x(t)]σx2.
maximizeη  η=k=1Mk>0NFFT21log2Mk(NFFT+NCP)(1+β),
subject  to  BER(Mk,νk2α2EbkNo/|H(k)|2+σd2)PeT,
k=1Mk>0NFFT21νk2NFFT21=1,
BER(Mk,γk)4log2(Mk)(11Mk)×l=1Rk=1NFFTQ((2l1)3log2(Mk)γk2(Mk1)),
C=log2(1+α2EbkN0/|H(k)|2+σd2).
H(0)=(m+1)A2πd2cosm(ϕ)T(ψ)g(ψ)cos(ψ),
g(ψ)={n2sin2(Ψfov),0ψΨfov0,ψ>Ψfov,
PoptR,lens=(mLED+1)Dlens28d2TlensPoptT,LED,
ϕ1/2lens=Ds2d,
ΛAPD=GAPDGPIN,
PoptRx,APD=(mlens+1)A2πd2cosmlens(ϕ)×T(ψ)g(ψ)cos(ψ)ΛAPDPoptR,lens,

Metrics